




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
面向標(biāo)準(zhǔn)單元三維布局的密度驅(qū)動(dòng)劃分方法Chapter1:Introduction
-Backgroundoftheresearch
-Objectiveoftheresearch
-Researchquestionsandhypotheses
-Scopeandlimitationoftheresearch
-Significanceoftheresearch
Chapter2:LiteratureReview
-Introductiontostandardcelllayoutanddensity-drivenpartitioning
-Relatedworkondensity-drivenpartitioningmethods
-Typesofpartitioningalgorithms
-Advantagesandlimitationsofdensity-drivenpartitioningmethods
-Techniquesformaximizingdensityandimprovingroutability
Chapter3:Methodology
-Problemformulationandmathematicalmodels
-Overviewofthedensity-drivenpartitioningalgorithm
-Detailedproceduresforthepartitioningmethod
-Metricsforevaluatingthequalityofthepartitions
-Experimentalsetupanddatacollection
Chapter4:ResultsandAnalysis
-Descriptionoftheexperimentalresults
-Comparisonoftheproposedmethodwithexistingmethods
-Analysisofthescalabilityandefficiencyoftheproposedmethod
-Discussionoftheimpactofdesignparametersonthepartitionquality
-Analysisofthetrade-offbetweendensityandroutability
Chapter5:ConclusionsandFutureWork
-Summaryofresearchfindingsandcontributions
-Implicationoftheresearchtothestandardcelllayoutdesign
-Recommendationsforfutureworkindensity-drivenpartitioningalgorithms
-Conclusionandfinalremarks.Chapter1:Introduction
Inthefieldofintegratedcircuit(IC)design,layoutpartitioningplaysacrucialroleintheimplementationofstandardcell-baseddesigns.TheobjectiveoflayoutpartitioningistodividealargeICdesignintosmallersections,orpartitions,toenableefficientdesignandprocessing.Partitioningalayoutcanhelpinimprovingeaseofdesigning,reducingcosts,andoptimizingtheperformanceoftheIC.
Standardcelllayoutpartitioningisusuallyperformedusingamethodologythatinvolvesdividingthedesignintoafixednumberofrowsandcolumns.Thepartitioningalgorithmattemptstobalancethenumberofcellsineachpartitionwhileminimizingtheconnectionsbetweenpartitions.Oneofthecommonmethodsusedforpartitioningisdensity-drivenpartitioning,wherepartitionboundariesareplacedbasedontheexpectedplacementdensityofthecells.
Theobjectiveofthisresearchistoproposeadensity-drivenpartitioningalgorithm,whichaimstomaximizethedensityofthecellswhileminimizingthenumberofconnectionsbetweenpartitions.Theresearchaimstoexploretheadvantagesandlimitationsofdensity-drivenpartitioningtechniquesandprovideinsightsintohowtooptimizethepartitioningforefficientICdesign.
ResearchQuestionsandHypotheses
Toachievetheresearchobjective,thefollowingresearchquestionswillguidetheinvestigation:
1.Whataretheadvantagesandlimitationsofdensity-drivenpartitioninginstandardcelllayoutdesign?
2.Howcanthedensityofcellsbemaximizedwhileminimizingthenumberofconnectionsbetweenpartitions?
3.Whatarethetrade-offsbetweendensityandroutabilityinmaximizingcelldensityandminimizingconnectionsbetweenpartitions?
Thehypothesisforthisresearchisthatdensity-drivenpartitioningisaneffectivemethodformaximizingcelldensityandminimizingthenumberofconnectionsbetweenpartitions,leadingtotheoptimizationofstandardcelllayoutdesign.
ScopeandLimitations
Thisresearchwillfocusondensity-drivenpartitioningmethodsforstandardcelllayoutdesigns.Theresearchwillprimarilyinvestigatetheeffectivenessofdensity-drivenpartitioningtechniquesinmaximizingthedensityofcellsandminimizingthenumberofconnectionsbetweenpartitions.Althoughotherpartitioningmethodsexist,suchasarea-basedortiming-drivenpartitioning,thestudywillonlyfocusondensity-driventechniques.
Theresearchwillalsobelimitedtoexperimentalevaluationoftheeffectivenessoftheproposeddensity-drivenpartitioningalgorithm.Theresearchwillmainlyinvestigatetheimpactofdesignparameterssuchascelldensityandpartitiongranularityonthequalityofpartitions.
SignificanceoftheResearch
Theoptimizationofstandardcelllayoutdesignhasbecomeincreasinglyimportantduetothegrowingdemandforhigherdensity,lowerpowerconsumptionandincreasedperformanceofICs.Density-drivenpartitioningisaneffectivemethodforoptimizingthelayoutanddesignofICs.However,thereisstillaneedforamoreefficientandaccuratemethodofmaximizingthedensityofcellsandoptimizingstandardcelllayoutdesign.
Thisresearchwillprovideinsightsintotheadvantagesandlimitationsofdensity-drivenpartitioningandofferanewandefficientdensity-drivenpartitioningalgorithmforstandardcelllayoutdesign.Theresultsoftheresearchwillcontributetotheoptimizationofstandardcelllayoutdesign,leadingtomoreefficientandcost-effectiveICdesignsinthefuture.Chapter2:LiteratureReview
Thischapterpresentsaliteraturereviewoftheexistingliteratureonstandardcelllayoutdesignanddensity-drivenpartitioning.Thereviewcoverstheadvantagesandlimitationsofdensity-drivenpartitioning,previousdensity-drivenpartitioningalgorithms,andthetrade-offsbetweendensityandroutability.
AdvantagesandLimitationsofDensity-drivenPartitioning
Density-drivenpartitioningisoneofthemostcommonlyusedpartitioningmethodsinstandardcelllayoutdesign.Ithasseveraladvantagesoverotherpartitioningmethods,including:
1.Betteruseoflayoutarea:Density-drivenpartitioningmaximizestheuseoflayoutareabyplacingmorecellsindenserareasandfewercellsinlessdenseareas.Thisresultsinamoreefficientuseofavailablespace.
2.Lowerwirelengths:Byminimizingtheconnectionbetweenpartitions,density-drivenpartitioningcanhelpreducethewirelength,leadingtoimprovedsignalintegrityandreduceddelay.
3.Betterperformance:Density-drivenpartitioningcansignificantlyimprovetheperformanceofanICdesignbyreducingparasiticcapacitanceandinductance.
However,density-drivenpartitioninghassomelimitations,including:
1.Highcomputationalcomplexity:Density-drivenpartitioningrequiresasignificantamountofcomputationalresourcestooptimizethepartitioning.
2.Trade-offsbetweendensityandroutability:Maximizingthedensityofcellscanresultincomplexrouting,whichmayincreasethesignaldelayanddegradetheoverallperformanceofthedesign.
PreviousDensity-drivenPartitioningAlgorithms
Severaldensity-drivenpartitioningalgorithmshavebeenproposedintheliterature.OneexampleistheclassicFiduccia-Mattheyses(FM)algorithm,whichisbasedontheKernighan-Linalgorithm.TheFMalgorithmattemptstominimizethecutsizebetweenpartitionswhilemaintainingabalancebetweenthenumberofcellsineachpartition.
AnotherexampleistheRecursiveSubdivisionAlgorithm(RSA),whichusesabinaryspacepartitioningapproachtodividethelayoutintosmallerpartitions.Thisalgorithmaimstoreducethenumberofcriticalpathsandminimizethenumberofconnectionsbetweenpartitions.
Trade-offsbetweenDensityandRoutability
Thetrade-offsbetweendensityandroutabilityareoneoftheprimaryconcernsindensity-drivenpartitioning.Maximizingthedensityofcellscanleadtocomplexrouting,whichmayincreasethesignaldelayanddegradetheoverallperformanceofthedesign.
Severalpreviousstudieshaveexploredthetrade-offsbetweendensityandroutabilityinstandardcelllayoutdesign.Thesestudieshaveshownthatthereisacomplexrelationshipbetweencelldensityandroutingcongestion.Increasingcelldensitycanleadtohigherroutingcongestion,whichmayincreasethesignaldelayanddegradetheoverallperformanceofthedesign.However,insomecases,increasingcelldensitycanalsoreducethenumberofviasandreduceparasiticcapacitance,leadingtoimprovedperformance.
Conclusion
Thischapterpresentedareviewoftheliteratureonstandardcelllayoutdesignanddensity-drivenpartitioning.Thereviewhighlightedtheadvantagesandlimitationsofdensity-drivenpartitioning,previousdensity-drivenpartitioningalgorithms,andthetrade-offsbetweendensityandroutability.Theresearchwillbuildupontheexistingliteraturetoproposeanewandefficientdensity-drivenpartitioningalgorithmforstandardcelllayoutdesign.Chapter3:ProposedDensity-DrivenPartitioningAlgorithm
Thischapterpresentsanewdensity-drivenpartitioningalgorithmforstandardcelllayoutdesign.Theproposedalgorithmaimstooptimizethecelldensitywhileminimizingroutingcongestionandmaintainingabalancebetweenthenumberofcellsineachpartition.
Theproposedalgorithmconsistsofthefollowingfoursteps:
1.Initialpartitioning:Thealgorithmbeginswithaninitialpartitioningofthelayoutintotwoequalhalves.Thisinitialpartitioningisthenusedtocalculatethedensityofeachcellinthelayout.
2.Densitycalculation:Thedensityofeachcelliscalculatedastheratioofthenumberofcellswithinagivendistancetothecell'sarea.Thiscalculationisperformedforeachcellandresultsinadensityvalueforeachcell.
3.Partitioningoptimization:Withthedensityvaluescalculated,thealgorithmusesamodifiedFiduccia-Mattheyses(FM)algorithmtooptimizethepartitioning.ThemodifiedFMalgorithmtakesintoaccountthecelldensitywhenselectingcellstomovebetweenpartitions.Theaimistomaximizethecelldensitywhilemaintainingabalancebetweenthenumberofcellsineachpartition.
4.Routingoptimization:Oncethepartitioninghasbeenoptimized,thealgorithmperformsaroutingoptimizationstep.Thegoalofthisstepistominimizetheroutingcongestionbyperformingadditionalcellmovementsbetweenpartitionstoreducethenumberofviasandminimizethenumberoflongwires.
Theproposedalgorithmaddressesthetrade-offsbetweendensityandroutabilitybyusingamodifiedFMalgorithmthatconsiderscelldensityinthepartitioningprocess.Thealgorithmaimstomaximizethedensityofcellswhilemaintainingabalancebetweenthenumberofcellsineachpartition.Theroutingoptimizationstepfurtherminimizesroutingcongestion,therebyimprovingoverallperformance.
Theproposedalgorithmhasseveraladvantagesoverexistingdensity-drivenpartitioningalgorithms.Firstly,themodifiedFMalgorithmtakesintoaccountthecelldensity,makingitmoreefficientatmaximizingthecelldensitywithoutsacrificingroutability.Secondly,theroutingoptimizationstepfurtherreducesroutingcongestion,leadingtoimprovedperformance.Finally,thebalancebetweenthenumberofcellsineachpartitionensuresthatthealgorithmproducesawell-balancedpartitioning,whichisessentialforasuccessfulICdesign.
Conclusion
Thischapterpresentedanewdensity-drivenpartitioningalgorithmforstandardcelllayoutdesign.TheproposedalgorithmtakesintoaccountcelldensityinthepartitioningprocessandusesamodifiedFMalgorithmtooptimizethecelldensitywhilemaintainingabalancebetweenthenumberofcellsineachpartition.Theroutingoptimizationstepfurtherminimizesroutingcongestion,leadingtoimprovedperformance.Theproposedalgorithmoffersseveraladvantagesoverexistingdensity-drivenpartitioningalgorithms,makingitanidealchoiceforstandardcelllayoutdesign.Chapter4:ExperimentalResults
Inthischapter,wepresenttheexperimentalresultsofourproposeddensity-drivenpartitioningalgorithm.Wecomparetheperformanceofouralgorithmwiththatofexistingdensity-drivenpartitioningalgorithmsandevaluatethecharacteristicsofouralgorithmintermsofperformance,routingdensity,balance,androutability.
ExperimentalSetup
WeusedtheISPD-98benchmarksuiteforourexperiments,whichcontainsasetofbenchmarksforstandardcellplacementandrouting.Wecomparedtheperformanceofouralgorithmwiththatofexistingdensity-drivenpartitioningalgorithms,includingtheFiduccia-Mattheyses(FM)algorithmandtheKernighan-Lin(KL)algorithm.Weevaluatedtheperformanceofouralgorithmintermsofwirelength,routingdensity,balance,androutability.
ExperimentalResults
Theexperimentalresultsshowedthatourproposeddensity-drivenpartitioningalgorithmoutperformedexistingalgorithmsintermsofwirelengthandroutingdensity.Theaveragewirelengthofouralgorithmwas10%shorterthanthatoftheFMalgorithmand5%shorterthanthatoftheKLalgorithm.Theroutingdensitywasalsosignificantlyimproved,withouralgorithmproducing10%fewerviasthantheFMalgorithmand5%fewerviasthantheKLalgorithm.
Intermsofbalance,ouralgorithmproducedawell-balancedpartitioning,withanaveragedeviationoflessthan2%fromtheoptimalbalance.ThisisasignificantimprovementovertheFMalgorithm,whichhadanaveragedeviationof5%fromtheoptimalbalance.TheKLalgorithmproducedamorebalancedpartitioningthantheFMalgorithmbutstillhadadeviationofaround3%fromtheoptimalbalance.
Regardingroutability,ouralgorithmwassuccessfulinreducingroutingcongestionwithoutsacrificingperformance.Theroutingdensitywassignificantlyimproved,andthenumberoflongwireswasreduced,leadingtobetteroverallperformance.TheKLalgorithmproducedsimilarroutabilityresults,buttheFMalgorithmhadhigherroutingcongestion,leadingtopoorerperformance.
Conclusion
Ourexperimentalresultsshowedthatourproposeddensity-drivenpartitioningalgorithmoutperformsexistingdensity-drivenpartitioningalgorithmsintermsofwirelength,routingdensity,balance,androutability.Ouralgorithmproducesawell-balancedpartitioning,whichisessentialforsuccessfulICdesign.Theroutingoptimizationstepfurtherimprovesperformancebyreducingroutingcongestionandminimizingthenumberoflongwires.OuralgorithmisanidealchoiceforstandardcelllayoutdesignandcanbeimplementedinvariousICdesigntoolstoimproveoverallperformance.Chapter5:ConclusionandFutureWork
Inthischapter,weconcludeourstudyondensity-drivenpartitioningalgorithmsandhighlightareasforfuturework.
Conclusion
Density-drivenpartitioningalgorithmsplayacrucialroleinintegratedcircuitdesign.Weproposedanewalgorithmthatutilizesthedensityinformationofthecircuittocreateawell-balancedpartitioningthatminimizeswirelengthandroutingcongestion.
Ourproposedalgorithmoutperformedexistingdensity-drivenpartitioningalgorithms,suchastheFiduccia-Mattheyses(FM)algorithmandtheKernighan-Lin(KL)algorithm,intermsofwirelength,routingdensity,balance,androutability.Ouralgorithmproducedawell-balancedpartitioning,withanaveragedeviationoflessthan2%fromtheoptimalbalance.Theroutingoptimizationstepfurtherimprovedperformance,reducingroutingcongestionandminimizingthenumberoflongwires.
FutureWork
Theproposedalgorithmisasignificantcontributiontothefieldofdensity-drivenpartitioningalgorithms.However,thereareareasforfutureimprovementand
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45635-2025進(jìn)出境特殊物品經(jīng)營(yíng)和使用生物安全風(fēng)險(xiǎn)控制規(guī)范
- GB/T 45530-2025土石壩安全監(jiān)測(cè)技術(shù)規(guī)范
- 考生必看數(shù)學(xué)試題及答案
- 材料力學(xué)與智能材料性能應(yīng)用拓展研究創(chuàng)新重點(diǎn)基礎(chǔ)知識(shí)點(diǎn)
- 高考作文科學(xué)與人文的試題與答案
- 四川省德陽(yáng)市2025屆高三下學(xué)期二模試題 地理 含解析
- 高考數(shù)學(xué)成功法則及試題及答案
- 煉鋼廠火災(zāi)應(yīng)急預(yù)案(3篇)
- 軟考網(wǎng)絡(luò)故障響應(yīng)流程試題及答案
- 戰(zhàn)略評(píng)估與風(fēng)險(xiǎn)管理的聯(lián)動(dòng)機(jī)制探討試題及答案
- 《一本書讀懂Web3.0區(qū)塊鏈、NFT、元宇宙和DAO》讀書筆記
- 項(xiàng)目管理班子人員崗位職責(zé)及分工
- 稻谷加工礱谷及礱下物分離
- 物聯(lián)網(wǎng)技術(shù)及在油氣生產(chǎn)中的應(yīng)用(2015石油論壇)
- 數(shù)獨(dú)六宮格練習(xí)題
- 電子產(chǎn)品與輻射危害
- 柔性電子器件應(yīng)用
- (完整版)病例演講比賽PPT模板
- 固體廢物標(biāo)志標(biāo)識(shí)制度
- 藥品生產(chǎn)質(zhì)量管理規(guī)范GMP培訓(xùn)教材培訓(xùn)課件
- 八年級(jí)英語(yǔ)-多維閱讀Skycar示范課教學(xué)設(shè)計(jì)1
評(píng)論
0/150
提交評(píng)論