




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
問題一:從甲、乙、丙3名同學中選出2名去參加某天的一項活動,其中1名同學參加上午的活動,1名同學參加下午的活動,有多少種不同的選法?問題二:從甲、乙、丙3名同學中選出2名去參加某天的一項活動,有多少種不同的選法?甲、乙;甲、丙;乙、丙
3情境創(chuàng)設從已知的3個不同元素中每次取出2個元素,合成一組問題2從已知的3
個不同元素中每次取出2個元素,按照一定的順序排成一列.問題1排列組合有順序無順序
一般地,從n個不同元素中取出m(m≤n)
個元素,按照一定的順序排成一列,叫做從
n個不同元素中取出
m個元素的一個排列.排列定義:類比排列的定義,請你得出組合的定義。
一般地,從n個不同元素中取出m(m≤n)個元素合成一組,叫做從n個不同元素中取出m個元素的一個組合.
排列與組合的概念有什么共同點與不同點?
概念講解組合定義:組合定義:
一般地,從n個不同元素中取出m(m≤n)個元素合成一組,叫做從n個不同元素中取出m個元素的一個組合.排列定義:一般地,從n個不同元素中取出m(m≤n)
個元素,按照一定的順序排成一列,叫做從
n個不同元素中取出
m個元素的一個排列.共同點:都要“從n個不同元素中任取m個元素”不同點:排列與元素的順序有關,而組合則與元素的順序無關.概念講解思考一:ab與ba是相同的排列還是相同的組合?為什么?思考二:兩個相同的排列有什么特點?兩個相同的組合呢?1)元素相同;2)元素排列順序相同.元素相同概念理解判斷下列問題是組合問題還是排列問題?
(1)設集合A={a,b,c,d,e},則集合A的含有3個元素的子集有多少個?(2)某鐵路線上有5個車站,則這條鐵路線上共需準備多少種車票?有多少種不同的火車票價?組合問題排列問題(3)10名同學分成人數(shù)相同的數(shù)學和英語兩個學習小組,共有多少種分法?組合問題(4)10人聚會,見面后每兩人之間要握手相互問候,共需握手多少次?組合問題(5)從4個風景點中選出2個游覽,有多少種不同的方法?組合問題(6)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?排列問題組合問題
甲、乙、丙、丁4支足球隊舉行單循環(huán)賽,(1)列出所有各場比賽的雙方;(2)列出所有冠亞軍的可能情況.(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
乙甲、丙甲、丁甲、丙乙、丁乙、丁丙(1)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:練習2練習3已知平面內(nèi)A,B,C,D這四個點中任何3個點都不在一條直線上,寫出由其中每3點為頂點的所有三角形.解:
從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號表示.如:從a,b,c三個不同的元素中取出兩個元素的所有組合個數(shù)是:如:已知4個元素a、b、c、d,寫出每次取出兩個元素的所有組合個數(shù)是:概念講解組合數(shù):注意:是一個數(shù),應該把它與“組合”區(qū)別開來.
前面已經(jīng)提到,組合與排列有相互關系,我們能否利用這種關系,通過排列數(shù)來求組合數(shù)呢?探究如從a,b,c,d四個元素中任取三個元素的所有組合數(shù),如何通過排列數(shù)來計算呢?1、寫出從a,b,c,d
四個元素中任取三個元素的所有組合。abc,abd,acd,bcd.bcddcbacd2、寫出從a,b,c,d
四個元素中任取三個元素的所有排列。組合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb如何計算:組合數(shù)公式
排列與組合是有區(qū)別的,但它們又有聯(lián)系.根據(jù)分步計數(shù)原理,得到:因此:
一般地,求從個不同元素中取出個元素的排列數(shù),可以分為以下2步:
第1步,先求出從這個不同元素中取出個元素的組合數(shù).
第2步,求每一個組合中個元素的全排列數(shù).
這里,且,這個公式叫做組合數(shù)公式.
概念講解組合數(shù)公式:
從n個不同元素中取出m個元素的排列數(shù)概念講解例1.計算例2.已知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025上海二手車買賣合同樣本
- 套細胞淋巴瘤的臨床護理
- 2025年企業(yè)設備借款抵押合同專業(yè)版范本
- 2025年人教版小學數(shù)學一年級下冊期末考試卷(帶答案)
- 白頭粉刺的臨床護理
- 縮鼻翼的臨床護理
- 新質(zhì)生產(chǎn)力綠色轉(zhuǎn)型
- 浙江國企招聘2025浙江省安全生產(chǎn)科學研究有限公司招聘19人筆試參考題庫附帶答案詳解
- 2025【合同范本】簡易勞務合作協(xié)議模板
- 《2025項目工程物資采購合同》
- DB64++1996-2024+燃煤電廠大氣污染物排放標準
- 初中八年級數(shù)學課件-最短路徑-將軍飲馬問題
- 信息論與編碼期末考試題(全套)
- 醫(yī)院醫(yī)學倫理審查委員會章程
- 廢棄物管理制度范本
- 房地產(chǎn)銷售價格優(yōu)惠申請表-
- 綠化自動滴灌系統(tǒng)施工方案
- 處理突發(fā)事件流程圖
- 第十二講 建設社會主義生態(tài)文明PPT習概論2023優(yōu)化版教學課件
- 2023年梅毒診療指南
- 醫(yī)療衛(wèi)生系統(tǒng)招聘《醫(yī)學基礎知識》備考題庫資料寶典(核心題版)
評論
0/150
提交評論