2022-2023學(xué)年廣東省清遠(yuǎn)市英德市重點(diǎn)名校初三下學(xué)期8月暑期摸底數(shù)學(xué)試題含解析_第1頁(yè)
2022-2023學(xué)年廣東省清遠(yuǎn)市英德市重點(diǎn)名校初三下學(xué)期8月暑期摸底數(shù)學(xué)試題含解析_第2頁(yè)
2022-2023學(xué)年廣東省清遠(yuǎn)市英德市重點(diǎn)名校初三下學(xué)期8月暑期摸底數(shù)學(xué)試題含解析_第3頁(yè)
2022-2023學(xué)年廣東省清遠(yuǎn)市英德市重點(diǎn)名校初三下學(xué)期8月暑期摸底數(shù)學(xué)試題含解析_第4頁(yè)
2022-2023學(xué)年廣東省清遠(yuǎn)市英德市重點(diǎn)名校初三下學(xué)期8月暑期摸底數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年廣東省清遠(yuǎn)市英德市重點(diǎn)名校初三下學(xué)期8月暑期摸底數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是我國(guó)南海地區(qū)圖,圖中的點(diǎn)分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個(gè)點(diǎn)之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山2.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長(zhǎng)線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長(zhǎng)為()A.8 B.10 C.13 D.143.如圖是某幾何體的三視圖,下列判斷正確的是()A.幾何體是圓柱體,高為2 B.幾何體是圓錐體,高為2C.幾何體是圓柱體,半徑為2 D.幾何體是圓錐體,直徑為24.下列實(shí)數(shù)0,,,π,其中,無(wú)理數(shù)共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.如圖,四邊形ABCD內(nèi)接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.6.我國(guó)古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載”繩索量竿”問(wèn)題:“一條竿子一條索,索比竿子長(zhǎng)一托.折回索子卻量竿,卻比竿子短一托“其大意為:現(xiàn)有一根竿和一條繩索,用繩索去量竿,繩索比竿長(zhǎng)5尺;如果將繩索對(duì)半折后再去量竿,就比竿短5尺.設(shè)繩索長(zhǎng)x尺,竿長(zhǎng)y尺,則符合題意的方程組是()A. B. C. D.7.關(guān)于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形8.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.9.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)P在x軸上,若以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)10.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,已知,要使,還需添加一個(gè)條件,則可以添加的條件是.(只寫(xiě)一個(gè)即可,不需要添加輔助線)12.計(jì)算(a3)2÷(a2)3的結(jié)果等于________13.如圖所示,D、E之間要挖建一條直線隧道,為計(jì)算隧道長(zhǎng)度,工程人員在線段AD和AE上選擇了測(cè)量點(diǎn)B,C,已知測(cè)得AD=100,AE=200,AB=40,AC=20,BC=30,則通過(guò)計(jì)算可得DE長(zhǎng)為_(kāi)____.14.已知直角三角形的兩邊長(zhǎng)分別為3、1.則第三邊長(zhǎng)為_(kāi)_______.15.已知關(guān)于x的不等式組只有四個(gè)整數(shù)解,則實(shí)數(shù)a的取值范是______.16.如圖,在中國(guó)象棋的殘局上建立平面直角坐標(biāo)系,如果“相”和“兵”的坐標(biāo)分別是(3,-1)和(-3,1),那么“卒”的坐標(biāo)為_(kāi)____.

三、解答題(共8題,共72分)17.(8分)凱里市某文具店某種型號(hào)的計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買(mǎi)優(yōu)惠,優(yōu)勢(shì)方法是:凡是一次買(mǎi)10只以上的,每多買(mǎi)一只,所買(mǎi)的全部計(jì)算器每只就降價(jià)0.1元,例如:某人買(mǎi)18只計(jì)算器,于是每只降價(jià)0.1×(18﹣10)=0.8(元),因此所買(mǎi)的18只計(jì)算器都按每只19.2元的價(jià)格購(gòu)買(mǎi),但是每只計(jì)算器的最低售價(jià)為16元.(1)求一次至少購(gòu)買(mǎi)多少只計(jì)算器,才能以最低價(jià)購(gòu)買(mǎi)?(2)求寫(xiě)出該文具店一次銷售x(x>10)只時(shí),所獲利潤(rùn)y(元)與x(只)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;(3)一天,甲顧客購(gòu)買(mǎi)了46只,乙顧客購(gòu)買(mǎi)了50只,店主發(fā)現(xiàn)賣(mài)46只賺的錢(qián)反而比賣(mài)50只賺的錢(qián)多,請(qǐng)你說(shuō)明發(fā)生這一現(xiàn)象的原因;當(dāng)10<x≤50時(shí),為了獲得最大利潤(rùn),店家一次應(yīng)賣(mài)多少只?這時(shí)的售價(jià)是多少?18.(8分)某中學(xué)開(kāi)展“漢字聽(tīng)寫(xiě)大賽”活動(dòng),為了解學(xué)生的參與情況,在該校隨機(jī)抽取了四個(gè)班級(jí)學(xué)生進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:(1)這四個(gè)班參與大賽的學(xué)生共__________人;(2)請(qǐng)你補(bǔ)全兩幅統(tǒng)計(jì)圖;(3)求圖1中甲班所對(duì)應(yīng)的扇形圓心角的度數(shù);(4)若四個(gè)班級(jí)的學(xué)生總數(shù)是160人,全校共2000人,請(qǐng)你估計(jì)全校的學(xué)生中參與這次活動(dòng)的大約有多少人.19.(8分)計(jì)算:﹣(﹣2)2+|﹣3|﹣20180×20.(8分)如圖,已知點(diǎn)D在反比例函數(shù)y=的圖象上,過(guò)點(diǎn)D作x軸的平行線交y軸于點(diǎn)B(0,3).過(guò)點(diǎn)A(5,0)的直線y=kx+b與y軸于點(diǎn)C,且BD=OC,tan∠OAC=.(1)求反比例函數(shù)y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說(shuō)明理由;(3)點(diǎn)E為x軸上點(diǎn)A右側(cè)的一點(diǎn),且AE=OC,連接BE交直線CA與點(diǎn)M,求∠BMC的度數(shù).21.(8分)如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的10×10網(wǎng)格中,已知點(diǎn)O,A,B均為網(wǎng)格線的交點(diǎn).在給定的網(wǎng)格中,以點(diǎn)O為位似中心,將線段AB放大為原來(lái)的2倍,得到線段(點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為).畫(huà)出線段;將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到線段.畫(huà)出線段;以為頂點(diǎn)的四邊形的面積是個(gè)平方單位.22.(10分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過(guò)點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)E,BD⊥CE于點(diǎn)D,連接DO交BC于點(diǎn)M.(1)求證:BC平分∠DBA;(2)若,求的值.23.(12分)數(shù)學(xué)課上,李老師和同學(xué)們做一個(gè)游戲:他在三張硬紙片上分別寫(xiě)出一個(gè)代數(shù)式,背面分別標(biāo)上序號(hào)①、②、③,擺成如圖所示的一個(gè)等式,然后翻開(kāi)紙片②是4x1+5x+6,翻開(kāi)紙片③是3x1﹣x﹣1.解答下列問(wèn)題求紙片①上的代數(shù)式;若x是方程1x=﹣x﹣9的解,求紙片①上代數(shù)式的值.24.如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線l∥BC.(1)判斷直線l與⊙O的位置關(guān)系,并說(shuō)明理由;(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)兩點(diǎn)直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個(gè)點(diǎn)之間距離最短的是三亞-永興島.故答案選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是兩點(diǎn)之間直線距離最短,解題的關(guān)鍵是熟練的掌握兩點(diǎn)之間直線距離最短.2、C【解析】

根據(jù)三角形的面積公式以及切線長(zhǎng)定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長(zhǎng)定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長(zhǎng)定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長(zhǎng)定理可知:CE=CF,BE=BG,∴△ABC的周長(zhǎng)為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點(diǎn)睛】本題考查切線長(zhǎng)定理,解題的關(guān)鍵是畫(huà)出輔助線,熟練運(yùn)用切線長(zhǎng)定理,本題屬于中等題型.3、A【解析】試題解析:根據(jù)主視圖和左視圖為矩形是柱體,根據(jù)俯視圖是圓可判斷出這個(gè)幾何體應(yīng)該是圓柱,再根據(jù)左視圖的高度得出圓柱體的高為2;故選A.考點(diǎn):由三視圖判斷幾何體.4、B【解析】

根據(jù)無(wú)理數(shù)的概念可判斷出無(wú)理數(shù)的個(gè)數(shù).【詳解】解:無(wú)理數(shù)有:,.故選B.【點(diǎn)睛】本題主要考查了無(wú)理數(shù)的定義,注意帶根號(hào)的要開(kāi)不盡方才是無(wú)理數(shù),無(wú)限不循環(huán)小數(shù)為無(wú)理數(shù).5、C【解析】

根據(jù)平行四邊形的性質(zhì)和圓周角定理可得出答案.【詳解】根據(jù)平行四邊形的性質(zhì)可知∠B=∠AOC,根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)可知∠B+∠D=180°,根據(jù)圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點(diǎn)睛】該題主要考查了圓周角定理及其應(yīng)用問(wèn)題;應(yīng)牢固掌握該定理并能靈活運(yùn)用.6、A【解析】

設(shè)索長(zhǎng)為x尺,竿子長(zhǎng)為y尺,根據(jù)“索比竿子長(zhǎng)一托,折回索子卻量竿,卻比竿子短一托”,即可得出關(guān)于x、y的二元一次方程組.【詳解】設(shè)索長(zhǎng)為x尺,竿子長(zhǎng)為y尺,根據(jù)題意得:.故選A.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.7、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結(jié)論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點(diǎn)睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關(guān)鍵.8、C【解析】

結(jié)合圖形,逐項(xiàng)進(jìn)行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點(diǎn)睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.9、C【解析】

分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫(huà)出即可.【詳解】如圖,分OP=AP(1點(diǎn)),OA=AP(1點(diǎn)),OA=OP(2點(diǎn))三種情況討論.∴以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有4個(gè).故選C.【點(diǎn)睛】本題考查了等腰三角形的判定和坐標(biāo)與圖形的性質(zhì),主要考查學(xué)生的動(dòng)手操作能力和理解能力,注意不要漏解.10、C【解析】

試題分析:A、B無(wú)法進(jìn)行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點(diǎn):因式分解【詳解】請(qǐng)?jiān)诖溯斎朐斀?!二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、可添∠ABD=∠CBD或AD=CD.【解析】

由AB=BC結(jié)合圖形可知這兩個(gè)三角形有兩組邊對(duì)應(yīng)相等,添加一組邊利用SSS證明全等,也可以添加一對(duì)夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點(diǎn)睛】本題考查了三角形全等的判定,結(jié)合圖形與已知條件靈活應(yīng)用全等三角形的判定方法是解題的關(guān)鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.12、1【解析】

根據(jù)冪的乘方,底數(shù)不變,指數(shù)相乘;同底數(shù)冪的除法,底數(shù)不變,指數(shù)相減進(jìn)行計(jì)算即可.【詳解】解:原式=【點(diǎn)睛】本題主要考查冪的乘方和同底數(shù)冪的除法,熟記法則是解決本題的關(guān)鍵,在計(jì)算中不要與其他法則相混淆.冪的乘方,底數(shù)不變,指數(shù)相乘;同底數(shù)冪的除法,底數(shù)不變,指數(shù)相減.13、1.【解析】

先根據(jù)相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性質(zhì)解答即可.【詳解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案為1.【點(diǎn)睛】考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.14、4或【解析】試題分析:已知直角三角形兩邊的長(zhǎng),但沒(méi)有明確是直角邊還是斜邊,因此分兩種情況討論:①長(zhǎng)為3的邊是直角邊,長(zhǎng)為3的邊是斜邊時(shí):第三邊的長(zhǎng)為:;②長(zhǎng)為3、3的邊都是直角邊時(shí):第三邊的長(zhǎng)為:;∴第三邊的長(zhǎng)為:或4.考點(diǎn):3.勾股定理;4.分類思想的應(yīng)用.15、-3<a≤-2【解析】分析:求出不等式組中兩不等式的解集,根據(jù)不等式取解集的方法:同大取大;同小取??;大大小小無(wú)解;大小小大取中間的法則表示出不等式組的解集,由不等式組只有四個(gè)整數(shù)解,根據(jù)解集取出四個(gè)整數(shù)解,即可得出a的范圍.詳解:由不等式①解得:由不等式②移項(xiàng)合并得:?2x>?4,解得:x<2,∴原不等式組的解集為由不等式組只有四個(gè)整數(shù)解,即為1,0,?1,?2,可得出實(shí)數(shù)a的范圍為故答案為點(diǎn)睛:考查一元一次不等式組的整數(shù)解,求不等式的解集,根據(jù)不等式組有4個(gè)整數(shù)解覺(jué)得實(shí)數(shù)的取值范圍.16、(-2,-2)【解析】

先根據(jù)“相”和“兵”的坐標(biāo)確定原點(diǎn)位置,然后建立坐標(biāo)系,進(jìn)而可得“卒”的坐標(biāo).【詳解】“卒”的坐標(biāo)為(﹣2,﹣2),故答案是:(﹣2,﹣2).【點(diǎn)睛】考查了坐標(biāo)確定位置,關(guān)鍵是正確確定原點(diǎn)位置.三、解答題(共8題,共72分)17、(1)1;(3);(3)理由見(jiàn)解析,店家一次應(yīng)賣(mài)45只,最低售價(jià)為16.5元,此時(shí)利潤(rùn)最大.【解析】試題分析:(1)設(shè)一次購(gòu)買(mǎi)x只,由于凡是一次買(mǎi)10只以上的,每多買(mǎi)一只,所買(mǎi)的全部計(jì)算器每只就降低0.10元,而最低價(jià)為每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根據(jù)(1)得到x≤1,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據(jù)已知條件可以得到y(tǒng)與x的函數(shù)關(guān)系式;(3)首先把函數(shù)變?yōu)閥=-0.1x2+9x試題解析:(1)設(shè)一次購(gòu)買(mǎi)x只,則30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少買(mǎi)1只,才能以最低價(jià)購(gòu)買(mǎi);(3)當(dāng)10<x≤1時(shí),y=[30﹣0.1(x﹣10)﹣13]x=-0.1x綜上所述:;(3)y=-0.1x2+9x②當(dāng)45<x≤1時(shí),y隨x的增大而減小,即當(dāng)賣(mài)的只數(shù)越多時(shí),利潤(rùn)變?。耶?dāng)x=46時(shí),y1=303.4,當(dāng)x=1時(shí),y3=3.∴y1>y3.即出現(xiàn)了賣(mài)46只賺的錢(qián)比賣(mài)1只賺的錢(qián)多的現(xiàn)象.當(dāng)x=45時(shí),最低售價(jià)為30﹣0.1(45﹣10)=16.5(元),此時(shí)利潤(rùn)最大.故店家一次應(yīng)賣(mài)45只,最低售價(jià)為16.5元,此時(shí)利潤(rùn)最大.考點(diǎn):二次函數(shù)的應(yīng)用;二次函數(shù)的最值;最值問(wèn)題;分段函數(shù);分類討論.18、(1)100;(2)見(jiàn)解析;(3)108°;(4)1250.【解析】試題分析:(1)根據(jù)乙班參賽30人,所占比為20%,即可求出這四個(gè)班總?cè)藬?shù);(2)根據(jù)丁班參賽35人,總?cè)藬?shù)是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總?cè)藬?shù),即可得出丙班參賽得人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)根據(jù)甲班級(jí)所占的百分比,再乘以360°,即可得出答案;(4)根據(jù)樣本估計(jì)總體,可得答案.試題解析:(1)這四個(gè)班參與大賽的學(xué)生數(shù)是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數(shù)是:100×15%=15(人);如圖:(3)甲班級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù)是:30%×360°=108°;(4)根據(jù)題意得:2000×=1250(人).答:全校的學(xué)生中參與這次活動(dòng)的大約有1250人.考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖;樣本估計(jì)總體.19、﹣1【解析】

根據(jù)乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)及立方根的定義依次計(jì)算各項(xiàng)后,再根據(jù)有理數(shù)的運(yùn)算法則進(jìn)行計(jì)算即可.【詳解】原式=﹣1+3﹣1×3=﹣1.【點(diǎn)睛】本題考查了乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運(yùn)算,熟知乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運(yùn)算順序是解決問(wèn)題的關(guān)鍵.20、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點(diǎn)坐標(biāo)可求得OA的長(zhǎng),再利用三角函數(shù)的定義可求得OC的長(zhǎng),可求得C、D點(diǎn)坐標(biāo),再利用待定系數(shù)法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設(shè)直線AC關(guān)系式為y=kx+b,∵過(guò)A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.21、(1)畫(huà)圖見(jiàn)解析;(2)畫(huà)圖見(jiàn)解析;(3)20【解析】【分析】(1)結(jié)合網(wǎng)格特點(diǎn),連接OA并延長(zhǎng)至A1,使OA1=2OA,同樣的方法得到B1,連接A1B1即可得;(2)結(jié)合網(wǎng)格特點(diǎn)根據(jù)旋轉(zhuǎn)作圖的方法找到A2點(diǎn),連接A2B1即可得;(3)根據(jù)網(wǎng)格特點(diǎn)可知四邊形AA1B1A2是正方形,求出邊長(zhǎng)即可求得面積.【詳解】(1)如圖所示;(2)如圖所示;(3)結(jié)合網(wǎng)格特點(diǎn)易得四邊形AA1B1A2是正方形,AA1=,所以四邊形AA1B1A2的面積為:=20,故答案為20.【點(diǎn)睛】本題考查了作圖-位似變換,旋轉(zhuǎn)變換,能根據(jù)位似比、旋轉(zhuǎn)方向和旋轉(zhuǎn)角得到關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是作圖的關(guān)鍵.22、(1)證明見(jiàn)解析;(2)【解析】分析:(1)如下圖,連接OC,由已知易得OC⊥DE,結(jié)合BD⊥DE可得OC∥BD,從而可得∠1=∠2,結(jié)合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,從而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根據(jù)相似三角形的性質(zhì)可得得,由,設(shè)EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.詳解:(1)證明:連結(jié)OC,∵DE與⊙O相切于點(diǎn)C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD..∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA..(2)∵OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,.∴,∴,∵,設(shè)EA=2k,AO=3k,∴OC=OA=OB=3k.∴.點(diǎn)睛:(1)作出如圖所示的輔助線,由“切線的性質(zhì)”得到OC⊥DE結(jié)合BD⊥DE得到OC∥BD是解答第1小題的關(guān)鍵;(2)解答第2小題的關(guān)鍵是由OC∥BD得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論