




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市東北師大附中新城校2023年初三下學(xué)期第一次考試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一個圓錐的側(cè)面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.62.如圖,在平面直角坐標(biāo)系中,正方形的頂點在軸上,且,,則正方形的面積是()A. B. C. D.3.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°4.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.195.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標(biāo)為 B.圖像的對稱軸在軸的右側(cè)C.當(dāng)時,的值隨值的增大而減小 D.的最小值為-36.=()A.±4 B.4 C.±2 D.27.把8a3﹣8a2+2a進行因式分解,結(jié)果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)28.某工程隊開挖一條480米的隧道,開工后,每天比原計劃多挖20米,結(jié)果提前4天完成任務(wù),若設(shè)原計劃每天挖米,那么求時所列方程正確的是()A. B.C. D.9.的算術(shù)平方根為()A. B. C. D.10.下列說法不正確的是()A.選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)B.從1,2,3,4,5中隨機抽取一個數(shù),取得奇數(shù)的可能性比較大C.甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.?dāng)?shù)據(jù)3,5,4,1,﹣2的中位數(shù)是411.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣312.下列各式中,計算正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,∠ABC=90°,AB=CB,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF,若∠CAE=32°,則∠ACF的度數(shù)為__________°.14.如果分式的值為0,那么x的值為___________.15.已知代數(shù)式2x﹣y的值是,則代數(shù)式﹣6x+3y﹣1的值是_____.16.如圖所示,四邊形ABCD中,,對角線AC、BD交于點E,且,,若,,則CE的長為_____.17.若關(guān)于x的方程x2﹣8x+m=0有兩個相等的實數(shù)根,則m=_____.18.函數(shù)的定義域是__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,然后從﹣1,0,2中選一個合適的x的值,代入求值.20.(6分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)21.(6分)如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,點P從點A出發(fā),沿折線AB﹣BC向終點C運動,在AB上以每秒8個單位長度的速度運動,在BC上以每秒2個單位長度的速度運動,點Q從點C出發(fā),沿CA方向以每秒個單位長度的速度運動,兩點同時出發(fā),當(dāng)點P停止時,點Q也隨之停止.設(shè)點P運動的時間為t秒.(1)求線段AQ的長;(用含t的代數(shù)式表示)(2)當(dāng)點P在AB邊上運動時,求PQ與△ABC的一邊垂直時t的值;(3)設(shè)△APQ的面積為S,求S與t的函數(shù)關(guān)系式;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時,直接寫出t的值.22.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).(Ⅰ)求二次函數(shù)的解析式及點A,B的坐標(biāo);(Ⅱ)設(shè)點Q在第一象限的拋物線上,若其關(guān)于原點的對稱點Q′也在拋物線上,求點Q的坐標(biāo);(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標(biāo).23.(8分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點D作DF⊥BC交BC的延長線于點F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c224.(10分)一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應(yīng)關(guān)系如圖所示:(1)甲乙兩地相距千米,慢車速度為千米/小時.(2)求快車速度是多少?(3)求從兩車相遇到快車到達甲地時y與x之間的函數(shù)關(guān)系式.(4)直接寫出兩車相距300千米時的x值.25.(10分)如圖,一次函數(shù)y=2x﹣4的圖象與反比例函數(shù)y=的圖象交于A、B兩點,且點A的橫坐標(biāo)為1.(1)求反比例函數(shù)的解析式;(2)點P是x軸上一動點,△ABP的面積為8,求P點坐標(biāo).26.(12分)在平面直角坐標(biāo)系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當(dāng)BD′∥OA時,求點D′的坐標(biāo);(II)如圖②,當(dāng)α=60°時,求點C′的坐標(biāo);(III)當(dāng)點B,D′,C′共線時,求點C′的坐標(biāo)(直接寫出結(jié)果即可).27.(12分)2018年湖南省進入高中學(xué)習(xí)的學(xué)生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學(xué)學(xué)生進行了隨機抽樣調(diào)查,根據(jù)學(xué)生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調(diào)查結(jié)果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列問題:(1)求被調(diào)查學(xué)生的人數(shù),并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應(yīng)的扇形圓心角的度數(shù);(3)已知該校有1500名學(xué)生,估計該校學(xué)生對政策內(nèi)容了解程度達到A等的學(xué)生有多少人?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】設(shè)母線長為R,底面半徑是3cm,則底面周長=6π,側(cè)面積=3πR=12π,
∴R=4cm.故選C.2、D【解析】作BE⊥OA于點E.則AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面積是:,故選D.3、C【解析】
根據(jù)非負數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得
cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故選C.4、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.5、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當(dāng)x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當(dāng)x<-1時,y隨x的增大而減小,故選項C錯誤,當(dāng)x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.6、B【解析】
表示16的算術(shù)平方根,為正數(shù),再根據(jù)二次根式的性質(zhì)化簡.【詳解】解:,故選B.【點睛】本題考查了算術(shù)平方根,本題難點是平方根與算術(shù)平方根的區(qū)別與聯(lián)系,一個正數(shù)算術(shù)平方根有一個,而平方根有兩個.7、C【解析】
首先提取公因式2a,進而利用完全平方公式分解因式即可.【詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【點睛】本題因式分解中提公因式法與公式法的綜合運用.8、C【解析】
本題的關(guān)鍵描述語是:“提前1天完成任務(wù)”;等量關(guān)系為:原計劃用時?實際用時=1.【詳解】解:原計劃用時為:,實際用時為:.所列方程為:,故選C.【點睛】本題考查列分式方程,分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.9、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術(shù)平方根即可.詳解:∵=2,而2的算術(shù)平方根是,∴的算術(shù)平方根是,故選B.點睛:此題主要考查了算術(shù)平方根的定義,解題時應(yīng)先明確是求哪個數(shù)的算術(shù)平方根,否則容易出現(xiàn)選A的錯誤.10、D【解析】試題分析:A、選舉中,人們通常最關(guān)心的數(shù)據(jù)為出現(xiàn)次數(shù)最多的數(shù),所以A選項的說法正確;B、從1,2,3,4,5中隨機抽取一個數(shù),由于奇數(shù)由3個,而偶數(shù)有2個,則取得奇數(shù)的可能性比較大,所以B選項的說法正確;C、甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,所以C選項的說法正確;D、數(shù)據(jù)3,5,4,1,﹣2由小到大排列為﹣2,1,3,4,5,所以中位數(shù)是3,所以D選項的說法錯誤.故選D.考點:隨機事件發(fā)生的可能性(概率)的計算方法11、A【解析】
方程變形后,配方得到結(jié)果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.【點睛】本題考查的知識點是了解一元二次方程﹣配方法,解題關(guān)鍵是熟練掌握完全平方公式.12、C【解析】
接利用合并同類項法則以及積的乘方運算法則、同底數(shù)冪的乘除運算法則分別計算得出答案.【詳解】A、無法計算,故此選項錯誤;B、a2?a3=a5,故此選項錯誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及積的乘方運算、同底數(shù)冪的乘除運算,正確掌握相關(guān)運算法則是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、58【解析】
根據(jù)HL證明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=13°,即可求出答案.【詳解】解:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt△CBF和Rt△ABE中∴Rt△CBF≌Rt△ABE(HL),∴∠FCB=∠EAB,∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,∴∠BCF=∠BAE=13°,∴∠ACF=∠BCF+∠ACB=45°+13°=58°故答案為58【點睛】本題考查了全等三角形的性質(zhì)和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性質(zhì)是全等三角形的對應(yīng)邊相等,對應(yīng)角相等.14、4【解析】
∵,∴x-4=0,x+2≠0,解得:x=4,故答案為4.15、【解析】
由題意可知:2x-y=,然后等式兩邊同時乘以-3得到-6x+3y=-,然后代入計算即可.【詳解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案為-.【點睛】本題主要考查的是求代數(shù)式的值,利用等式的性質(zhì)求得-6x+3y=-是解題的關(guān)鍵.16、【解析】
此題有等腰三角形,所以可作BH⊥CD,交EC于點G,利用三線合一性質(zhì)及鄰補角互補可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時再延長GB至K,使AK=AG,構(gòu)造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關(guān)系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設(shè),則,,∴,∴,在中,,解得,,當(dāng)時,,所以,∴,,,作,設(shè),,,,,∴,,∴,則,故答案為【點睛】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運用,綜合性較強,正確作出輔助線是解題的關(guān)鍵.17、1【解析】
根據(jù)判別式的意義得到△=(﹣8)2﹣4m=0,然后解關(guān)于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程無實數(shù)根.18、【解析】
根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,可知:x-1≥0,解得x的范圍.【詳解】根據(jù)題意得:x-1≥0,解得:x≥1.故答案為:.【點睛】此題考查二次根式,解題關(guān)鍵在于掌握二次根式有意義的條件.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、-.【解析】
先把分式除法轉(zhuǎn)換成乘法進行約分化簡,然后再找出分式的最小公分母通分進行化簡求值,在代入求值時要保證每一個分式的分母不能為1【詳解】解:原式=-=-===-.當(dāng)x=-1或者x=1時分式?jīng)]有意義所以選擇當(dāng)x=2時,原式=.【點睛】分式的化簡求值是此題的考點,需要特別注意的是分式的分母不能為1.20、見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;
應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS),
∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.21、(1)4﹣t;(2)當(dāng)點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)S與t的函數(shù)關(guān)系式為:S=;(4)t的值為或.【解析】分析:(1)根據(jù)勾股定理求出AC的長,然后由AQ=AC-CQ求解即可;(2)當(dāng)點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:當(dāng)Q在C處,P在A處時,PQ⊥BC;當(dāng)PQ⊥AB時;當(dāng)PQ⊥AC時;分別求解即可;(3)當(dāng)P在AB邊上時,即0≤t≤1,作PG⊥AC于G,或當(dāng)P在邊BC上時,即1<t≤3,分別根據(jù)三角形的面積求函數(shù)的解析式即可;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當(dāng)P在邊AB上時,作PG⊥AC于G,則AG=GQ,列方程求解;②當(dāng)P在邊AC上時,AQ=PQ,根據(jù)勾股定理求解.詳解:(1)如圖1,Rt△ABC中,∠A=30°,AB=8,∴BC=AB=4,∴AC=,由題意得:CQ=t,∴AQ=4﹣t;(2)當(dāng)點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:①當(dāng)Q在C處,P在A處時,PQ⊥BC,此時t=0;②當(dāng)PQ⊥AB時,如圖2,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴,t=;③當(dāng)PQ⊥AC時,如圖3,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴t=;綜上所述,當(dāng)點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)分兩種情況:①當(dāng)P在AB邊上時,即0≤t≤1,如圖4,作PG⊥AC于G,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴S△APQ=AQ?PG=(4﹣t)?4t=﹣2t2+8t;②當(dāng)P在邊BC上時,即1<t≤3,如圖5,由題意得:PB=2(t﹣1),∴PC=4﹣2(t﹣1)=﹣2t+6,∴S△APQ=AQ?PC=(4﹣t)(﹣2t+6)=t2;綜上所述,S與t的函數(shù)關(guān)系式為:S=;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當(dāng)P在邊AB上時,如圖6,AP=PQ,作PG⊥AC于G,則AG=GQ,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴AG=4t,由AQ=2AG得:4﹣t=8t,t=,②當(dāng)P在邊AC上時,如圖7,AQ=PQ,Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,∴,t=或﹣(舍),綜上所述,t的值為或.點睛:此題主要考查了三角形中的動點問題,用到勾股定理,等腰三角形的性質(zhì),直角三角形的性質(zhì),二次函數(shù)等知識,是一道比較困難的綜合題,關(guān)鍵是合理添加輔助線,構(gòu)造合適的方程求解.22、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】
(1)設(shè)頂點式,再代入C點坐標(biāo)即可求解解析式,再令y=0可求解A和B點坐標(biāo);(2)設(shè)點Q(m,﹣m2+4m+5),則其關(guān)于原點的對稱點Q′(﹣m,m2﹣4m﹣5),再將Q′坐標(biāo)代入拋物線解析式即可求解m的值,同時注意題干條件“Q在第一象限的拋物線上”;(3)利用平移AC的思路,作MK⊥對稱軸x=2于K,使MK=OC,分M點在對稱軸左邊和右邊兩種情況分類討論即可.【詳解】(Ⅰ)設(shè)二次函數(shù)的解析式為y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)設(shè)點Q(m,﹣m2+4m+5),則Q′(﹣m,m2﹣4m﹣5).把點Q′坐標(biāo)代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=或(舍棄),∴Q(,).(Ⅲ)如圖,作MK⊥對稱軸x=2于K.①當(dāng)MK=OA,NK=OC=5時,四邊形ACNM是平行四邊形.∵此時點M的橫坐標(biāo)為1,∴y=8,∴M(1,8),N(2,13),②當(dāng)M′K=OA=1,KN′=OC=5時,四邊形ACM′N′是平行四邊形,此時M′的橫坐標(biāo)為3,可得M′(3,8),N′(2,3).【點睛】本題主要考查了二次函數(shù)的應(yīng)用,第3問中理解通過平移AC可應(yīng)用“一組對邊平行且相等”得到平行四邊形.23、見解析.【解析】
首先連結(jié)BD,過點B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【詳解】證明:連結(jié)BD,過點B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【點睛】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關(guān)鍵.24、(1)10,1;(2)快車速度是2千米/小時;(3)從兩車相遇到快車到達甲地時y與x之間的函數(shù)關(guān)系式為y=150x﹣10;(4)當(dāng)x=2小時或x=4小時時,兩車相距300千米.【解析】
(1)由當(dāng)x=0時y=10可得出甲乙兩地間距,再利用速度=兩地間距÷慢車行駛的時間,即可求出慢車的速度;(2)設(shè)快車的速度為a千米/小時,根據(jù)兩地間距=兩車速度之和×相遇時間,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;(3)分別求出快車到達甲地的時間及快車到達甲地時兩車之間的間距,根據(jù)函數(shù)圖象上點的坐標(biāo),利用待定系數(shù)法即可求出該函數(shù)關(guān)系式;(4)利用待定系數(shù)法求出當(dāng)0≤x≤4時y與x之間的函數(shù)關(guān)系式,將y=300分別代入0≤x≤4時及4≤x≤時的函數(shù)關(guān)系式中求出x值,此題得解.【詳解】解:(1)∵當(dāng)x=0時,y=10,∴甲乙兩地相距10千米.10÷10=1(千米/小時).故答案為10;1.(2)設(shè)快車的速度為a千米/小時,根據(jù)題意得:4(1+a)=10,解得:a=2.答:快車速度是2千米/小時.(3)快車到達甲地的時間為10÷2=(小時),當(dāng)x=時,兩車之間的距離為1×=400(千米).設(shè)當(dāng)4≤x≤時,y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),∵該函數(shù)圖象經(jīng)過點(4,0)和(,400),∴,解得:,∴從兩車相遇到快車到達甲地時y與x之間的函數(shù)關(guān)系式為y=150x﹣10.(4)設(shè)當(dāng)0≤x≤4時,y與x之間的函數(shù)關(guān)系式為y=mx+n(m≠0),∵該函數(shù)圖象經(jīng)過點(0,10)和(4,0),∴,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣150x+10.當(dāng)y=300時,有﹣150x+10=300或150x﹣10=300,解得:x=2或x=4.∴當(dāng)x=2小時或x=4小時時,兩車相距300千米.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一元一次方程的應(yīng)用以及一次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是:(1)利用速度=兩地間距÷慢車行駛的時間,求出慢車的速度;(2)根據(jù)兩地間距=兩車速度之和×相遇時間,列出關(guān)于a的一元一次方程;(3)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出函數(shù)關(guān)系式;(4)利用一次函數(shù)圖象上點的坐標(biāo)特征求出當(dāng)y=300時x的值.25、(1)y=;(2)(4,0)或(0,0)【解析】
(1)把x=1代入一次函數(shù)解析式求得A的坐標(biāo),利用待定系數(shù)法求得反比例函數(shù)解析式;(2)解一次函數(shù)與反比例函數(shù)解析式組成的方程組求得B的坐標(biāo),后利用△ABP的面積為8,可求P點坐標(biāo).【詳解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=,可得k=1×2=6,∴反比例函數(shù)的解析式為y=;(2)根據(jù)題意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴點B的坐標(biāo)為(﹣1,﹣6).設(shè)直線AB與x軸交于點C,y=2x﹣4中,令y=0,則x=2,即C(2,0),設(shè)P點坐標(biāo)為(x,0),則×|x﹣2|×(2+6)=8,解得x=4或0,∴點P的坐標(biāo)為(4,0)或(0,0).【點睛】本題主要考查用待定系數(shù)法求一次函數(shù)解析式,及一次函數(shù)與反比例函數(shù)交點的問題,聯(lián)立兩函數(shù)可求解。26、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】
(I)如圖①,當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據(jù)對稱性確定D″的坐標(biāo);(II)如圖②,當(dāng)α=60°時,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【詳解】解:(I)如圖①,∵A(8,0),B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞動合同范本題目
- 農(nóng)村水田租賃承包合同范本
- 企業(yè)汽車銷售合同范本
- 代理買賣二手車合同范本
- 代領(lǐng)購房合同范本
- 一般經(jīng)銷合同范例
- 個人購貨采購合同范本
- 關(guān)于裝修貸款合同范本
- 升旗臺合同范本
- 前臺勞務(wù)派遣合同范本
- 冀教版(冀人版)二年級下冊小學(xué)美術(shù)全冊教案
- 母嬰護理培訓(xùn)課件
- DZ∕T 0207-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 硅質(zhì)原料類(正式版)
- 2024年江蘇農(nóng)林職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫各版本
- 汽車制造企業(yè)物流自動化
- 數(shù)字貿(mào)易學(xué) 課件 第1-3章 導(dǎo)論、數(shù)字貿(mào)易的產(chǎn)生與發(fā)展;消費互聯(lián)網(wǎng)、產(chǎn)業(yè)互聯(lián)網(wǎng)與工業(yè)互聯(lián)網(wǎng)
- XX附屬中學(xué)集團化辦學(xué)三年發(fā)展規(guī)劃
- 《飛向太空的航程》基礎(chǔ)字詞梳理
- GB/T 144-2024原木檢驗
- 追覓入職測評題庫
- 寧德時代入職測評試題答案
評論
0/150
提交評論