版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.是兩個連續(xù)整數(shù),若,則分別是().A.2,3 B.3,2 C.3,4 D.6,82.若一次函數(shù)y=(2m﹣3)x﹣1+m的圖象不經(jīng)過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤3.如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設(shè)點E運動路程為x,CF=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對4.如圖所示,在長為8cm,寬為6cm的矩形中,截去一個矩形(圖中陰影部分),如果剩下的矩形與原矩形相似,那么剩下矩形的面積是()A.28cm2 B.27cm2 C.21cm2 D.20cm25.如圖,在?ABCD中,對角線AC的垂直平分線分別交AD、BC于點E、F,連接CE,若△CED的周長為6,則?ABCD的周長為()A.6 B.12 C.18 D.246.如圖,在同一平面直角坐標系中,一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,則不等式y(tǒng)1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<27.下列現(xiàn)象,能說明“線動成面”的是()A.天空劃過一道流星B.汽車雨刷在擋風玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉(zhuǎn)一扇門,門在空中運動的痕跡8.如圖是二次函數(shù)y=ax2+bx+c的圖象,對于下列說法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當x>0時,y隨x的增大而減小,其中正確的是()A.①②③ B.①②④ C.②③④ D.③④⑤9.若矩形的長和寬是方程x2-7x+12=0的兩根,則矩形的對角線長度為()A.5 B.7 C.8 D.1010.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a(chǎn)10÷a5=a5 D.(xy2)3=xy6二、填空題(本大題共6個小題,每小題3分,共18分)11.將ΔABC繞點B逆時針旋轉(zhuǎn)到ΔA'BC'使A、B、C'在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為________cm12.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應(yīng)向每位乘客至少收取_____元保險費才能保證不虧本.13.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.14.如圖,已知,要使,還需添加一個條件,則可以添加的條件是.(只寫一個即可,不需要添加輔助線)15.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F(xiàn)分別在OA,,OB上,則圖中陰影部分的面積為__________.16.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是_______.三、解答題(共8題,共72分)17.(8分)東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了5元.求第一批悠悠球每套的進價是多少元;如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?18.(8分)先化簡代數(shù)式,再從范圍內(nèi)選取一個合適的整數(shù)作為的值代入求值。19.(8分)先化簡,再求值:1+xx2-120.(8分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,求AE的長.21.(8分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設(shè)運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).
(1)當x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)22.(10分)如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).(1)求拋物線的解析式;(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.①是否同時存在點D和點P,使得△APQ和△CDO全等,若存在,求點D的坐標,若不存在,請說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.23.(12分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.24.如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù),可得答案.【詳解】根據(jù)題意,可知,可得a=2,b=1.故選A.【點睛】本題考查了估算無理數(shù)的大小,明確是解題關(guān)鍵.2、B【解析】
根據(jù)一次函數(shù)的性質(zhì),根據(jù)不等式組即可解決問題;【詳解】∵一次函數(shù)y=(2m-3)x-1+m的圖象不經(jīng)過第三象限,∴,解得1≤m<.故選:B.【點睛】本題考查一次函數(shù)的圖象與系數(shù)的關(guān)系等知識,解題的關(guān)鍵是學會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.3、A【解析】
由已知,AB=a,AB+BC=5,當E在BC上時,如圖,可得△ABE∽△ECF,繼而根據(jù)相似三角形的性質(zhì)可得y=﹣,根據(jù)二次函數(shù)的性質(zhì)可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當E在AB上時,y=時,x=,據(jù)此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當y=時,=﹣,解得x1=,x2=,當E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【點睛】本題考查了二次函數(shù)的應(yīng)用,相似三角形的判定與性質(zhì),綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數(shù)的性質(zhì)以及相似三角形的判定與性質(zhì)是解題的關(guān)鍵.4、B【解析】
根據(jù)題意,剩下矩形與原矩形相似,利用相似形的對應(yīng)邊的比相等可得.【詳解】解:依題意,在矩形ABDC中截取矩形ABFE,則矩形ABDC∽矩形FDCE,則設(shè)DF=xcm,得到:解得:x=4.5,則剩下的矩形面積是:4.5×6=17cm1.【點睛】本題就是考查相似形的對應(yīng)邊的比相等,分清矩形的對應(yīng)邊是解決本題的關(guān)鍵.5、B【解析】∵四邊形ABCD是平行四邊形,∴DC=AB,AD=BC,∵AC的垂直平分線交AD于點E,∴AE=CE,∴△CDE的周長=DE+CE+DC=DE+AE+DC=AD+DC=6,∴?ABCD的周長=2×6=12,故選B.6、C【解析】【分析】一次函數(shù)y1=kx+b落在與反比例函數(shù)y2=圖象上方的部分對應(yīng)的自變量的取值范圍即為所求.【詳解】∵一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,∴不等式y(tǒng)1>y2的解集是﹣3<x<0或x>2,故選C.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結(jié)合是解題的關(guān)鍵.7、B【解析】
本題是一道關(guān)于點、線、面、體的題目,回憶點、線、面、體的知識;【詳解】解:∵A、天空劃過一道流星說明“點動成線”,∴故本選項錯誤.∵B、汽車雨刷在擋風玻璃上刷出的痕跡說明“線動成面”,∴故本選項正確.∵C、拋出一塊小石子,石子在空中飛行的路線說明“點動成線”,∴故本選項錯誤.∵D、旋轉(zhuǎn)一扇門,門在空中運動的痕跡說明“面動成體”,∴故本選項錯誤.故選B.【點睛】本題考查了點、線、面、體,準確認識生活實際中的現(xiàn)象是解題的關(guān)鍵.點動成線、線動成面、面動成體.8、C【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由圖象可知:a>0,c<0,∴ac<0,故①錯誤;②由于對稱軸可知:<1,∴2a+b>0,故②正確;③由于拋物線與x軸有兩個交點,∴△=b2﹣4ac>0,故③正確;④由圖象可知:x=1時,y=a+b+c<0,故④正確;⑤當x>時,y隨著x的增大而增大,故⑤錯誤;故選:C.【點睛】本題考查二次函數(shù),解題的關(guān)鍵是熟練運用二次函數(shù)的圖象與性質(zhì),本題屬于基礎(chǔ)題型.9、A【解析】解:設(shè)矩形的長和寬分別為a、b,則a+b=7,ab=12,所以矩形的對角線長====1.故選A.10、C【解析】
根據(jù)乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方進行計算即可得到答案.【詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【點睛】本題考查乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方解題的關(guān)鍵是掌握乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方的運算.二、填空題(本大題共6個小題,每小題3分,共18分)11、4π【解析】分析:易得整理后陰影部分面積為圓心角為110°,兩個半徑分別為4和1的圓環(huán)的面積.詳解:由旋轉(zhuǎn)可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴陰影部分面積=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案為4π.點睛:本題利用旋轉(zhuǎn)前后的圖形全等,直角三角形的性質(zhì),扇形的面積公式求解.12、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應(yīng)該收取保險費每人=21元.13、6.【解析】
作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵點A為函數(shù)y=(x>0)的圖象上一點,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案為6.14、可添∠ABD=∠CBD或AD=CD.【解析】
由AB=BC結(jié)合圖形可知這兩個三角形有兩組邊對應(yīng)相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點睛】本題考查了三角形全等的判定,結(jié)合圖形與已知條件靈活應(yīng)用全等三角形的判定方法是解題的關(guān)鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.15、8π﹣8【解析】
連接EF、OC交于點H,根據(jù)正切的概念求出FH,根據(jù)菱形的面積公式求出菱形FOEC的面積,根據(jù)扇形面積公式求出扇形OAB的面積,計算即可.【詳解】連接EF、OC交于點H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點睛】本題考查了扇形面積的計算、菱形的性質(zhì),熟練掌握扇形的面積公式、菱形的性質(zhì)、靈活運用銳角三角函數(shù)的定義是解題的關(guān)鍵.16、【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次都摸到白球的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:
∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,
∴兩次都摸到白球的概率是:=.
故答案為:.【點睛】本題考查用樹狀圖法求概率,解題的關(guān)鍵是掌握用樹狀圖法求概率.三、解答題(共8題,共72分)17、(1)第一批悠悠球每套的進價是25元;(2)每套悠悠球的售價至少是1元.【解析】分析:(1)設(shè)第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據(jù)數(shù)量=總價÷單價結(jié)合第二批購進數(shù)量是第一批數(shù)量的1.5倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)每套悠悠球的售價為y元,根據(jù)銷售收入-成本=利潤結(jié)合全部售完后總利潤不低于25%,即可得出關(guān)于y的一元一次不等式,解之取其中的最小值即可得出結(jié)論.詳解:(1)設(shè)第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據(jù)題意得:,解得:x=25,經(jīng)檢驗,x=25是原分式方程的解.答:第一批悠悠球每套的進價是25元.(2)設(shè)每套悠悠球的售價為y元,根據(jù)題意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售價至少是1元.點睛:本題考查了分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出分式方程是解題的關(guān)鍵;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.18、-2【解析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,再選取使分式有意義的x的值代入計算可得.【詳解】原式===,∵x≠±1且x≠0,∴在-1≤x≤2中符合條件的x的值為x=2,則原式=-=-2.【點睛】此題考查分式的化簡求值,解題關(guān)鍵在于掌握運算法則.19、3+3【解析】
先化簡分式,再計算x的值,最后把x的值代入化簡后的分式,計算出結(jié)果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當x=2cos30°+tan45°=2×32=3+1時.xx-1=【點睛】本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關(guān)鍵是掌握分式的運算法則和運算順序.20、(1);(2)詳見解析;(3)AE=.【解析】
(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當時,S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,【點睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.21、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解析】
(1)由于O是EF中點,因此當P為FG中點時,OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據(jù)OF的長和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關(guān)系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過點O作OD⊥FP,垂足為D∵點O為EF中點∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設(shè)存在某一時刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【點睛】本題是比較常規(guī)的動態(tài)幾何壓軸題,第1小題運用相似形的知識容易解決,第2小題同樣是用相似三角形建立起函數(shù)解析式,要說的是本題中說明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數(shù)解析式不可分離的一部分,無論命題者是否交待了都必須寫,第3小題只要根據(jù)函數(shù)解析式列個方程就能解決.22、(1)y=﹣x2﹣x+3;(2)①點D坐標為(﹣,0);②點M(,0).【解析】
(1)應(yīng)用待定系數(shù)法問題可解;(2)①通過分類討論研究△APQ和△CDO全等②由已知求點D坐標,證明DN∥BC,從而得到DN為中線,問題可解.【詳解】(1)將點(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴拋物線解析式為:y=-x2-x+3;(2)①存在點D,使得△APQ和△CDO全等,當D在線段OA上,∠QAP=∠DCO,AP=OC=3時,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴點D坐標為(-,0).由對稱性,當點D坐標為(,0)時,由點B坐標為(4,0),此時點D(,0)在線段OB上滿足條件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,則點D坐標為(-1,0)且AD=BD=5,連DN,CM,則DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,則點N為AC中點.∴DN時△ABC的中位線,∵DN=DM=BC=,∴OM=DM-OD=∴點M(,0)【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)待定系數(shù)法、三角形全等的判定、銳角三角形函數(shù)的相關(guān)知識.解答時,注意數(shù)形結(jié)合.23、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設(shè)⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版工程機械設(shè)備租賃與技術(shù)創(chuàng)新服務(wù)合同3篇
- 二零二五版護林員勞動合同書編制指南3篇
- 二零二五版按揭購房合同:智能家居系統(tǒng)智能家居系統(tǒng)節(jié)能改造合同3篇
- 二零二五年度游戲公司代運營及運營支持合同3篇
- 二零二五版包雪服務(wù)項目風險評估與預案合同3篇
- 二零二五年度餐飲配送企業(yè)食品安全責任追究合同3篇
- 二零二五版海洋工程高低壓配電系統(tǒng)安裝合同2篇
- 二零二五版小微企業(yè)貸款合同與信用增級服務(wù)協(xié)議3篇
- 二零二五年度海洋工程設(shè)備采購合同15篇
- 二零二五年黃豆種植戶風險管理采購合同3篇
- MT/T 199-1996煤礦用液壓鉆車通用技術(shù)條件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力學性能試驗第1部分:桌類強度和耐久性
- 第三方在線糾紛解決機制(ODR)述評,國際商法論文
- 公寓de全人物攻略本為個人愛好而制成如需轉(zhuǎn)載注明信息
- 第5章-群體-團隊溝通-管理溝通
- 腎臟病飲食依從行為量表(RABQ)附有答案
- 深基坑-安全教育課件
- 園林施工管理大型園林集團南部區(qū)域養(yǎng)護標準圖例
- 排水許可申請表
- 低血糖的觀察和護理課件
評論
0/150
提交評論