版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)建模方法擬合第一頁,共四十九頁,編輯于2023年,星期三擬合問題引例1溫度t(oC)20.532.751.073.095.7電阻R()7658268739421032已知熱敏電阻數(shù)據(jù):求60oC時(shí)的電阻R.
設(shè)
R=at+ba,b為待定系數(shù)第二頁,共四十九頁,編輯于2023年,星期三擬合問題引例2
t(h)0.250.511.523468c(g/ml)19.2118.1515.3614.1012.899.327.455.243.01已知一室模型快速靜脈注射下的血藥濃度數(shù)據(jù)(t=0注射300mg)求血藥濃度隨時(shí)間的變化規(guī)律c(t).作半對數(shù)坐標(biāo)系(semilogy)下的圖形MATLAB(aa1)第三頁,共四十九頁,編輯于2023年,星期三曲線擬合問題的提法已知一組(二維)數(shù)據(jù),即平面上n個(gè)點(diǎn)(xi,yi)i=1,…,n,尋求一個(gè)函數(shù)(曲線)y=f(x),使f(x)在某種準(zhǔn)則下與所有數(shù)據(jù)點(diǎn)最為接近,即曲線擬合得最好.
+++++++++xyy=f(x)(xi,yi)ii為點(diǎn)(xi,yi)與曲線y=f(x)的距離第四頁,共四十九頁,編輯于2023年,星期三擬合與插值的關(guān)系
函數(shù)插值與曲線擬合都是要根據(jù)一組數(shù)據(jù)構(gòu)造一個(gè)函數(shù)作為近似,由于近似的要求不同,二者在數(shù)學(xué)方法上是完全不同的.實(shí)例:下面數(shù)據(jù)是某次實(shí)驗(yàn)所得,希望得到X和f之間的關(guān)系?MATLAB(cn)問題:給定一批數(shù)據(jù)點(diǎn),需確定滿足特定要求的曲線或曲面解決方案:若不要求曲線(面)通過所有數(shù)據(jù)點(diǎn),而是要求它反映對象整體的變化趨勢,這就是數(shù)據(jù)擬合,又稱曲線擬合或曲面擬合.若要求所求曲線(面)通過所給所有數(shù)據(jù)點(diǎn),就是插值問題;第五頁,共四十九頁,編輯于2023年,星期三最臨近插值、線性插值、樣條插值與曲線擬合結(jié)果:第六頁,共四十九頁,編輯于2023年,星期三曲線擬合問題最常用的解法——線性最小二乘法的基本思路第一步:先選定一組函數(shù)
r1(x),r2(x),…,rm(x),m<n,
令
f(x)=a1r1(x)+a2r2(x)+…+amrm(x)(1)其中
a1,a2,…,am
為待定系數(shù).
第二步:確定a1,a2,…,am
的準(zhǔn)則(最小二乘準(zhǔn)則):使n個(gè)點(diǎn)(xi,yi)與曲線y=f(x)的距離i
的平方和最小
.記
問題歸結(jié)為,求
a1,a2,…,am
使
J(a1,a2,…,am)
最小.第七頁,共四十九頁,編輯于2023年,星期三線性最小二乘法的求解:預(yù)備知識(shí)超定方程組:方程個(gè)數(shù)大于未知量個(gè)數(shù)的方程組即Ra=y其中超定方程組一般不存在解的矛盾方程組.如果有向量a使得達(dá)到最小,則稱a為上述超定方程組的最小二乘解.第八頁,共四十九頁,編輯于2023年,星期三線性最小二乘法的求解
定理:當(dāng)RTR可逆時(shí),超定方程組(3)存在最小二乘解,且即為方程組
RTRa=RTy的解:a=(RTR)-1RTy
所以,曲線擬合的最小二乘法要解決的問題,實(shí)際上就是求以下超定方程組的最小二乘解的問題.其中Ra=y
(3)第九頁,共四十九頁,編輯于2023年,星期三線性最小二乘擬合f(x)=a1r1(x)+…+amrm(x)中函數(shù){r1(x),…,rm(x)}的選取
1.通過機(jī)理分析建立數(shù)學(xué)模型來確定f(x);++++++++++++++++++++++++++++++f=a1+a2xf=a1+a2x+a3x2f=a1+a2x+a3x2f=a1+a2/xf=aebxf=ae-bx2.將數(shù)據(jù)(xi,yi)i=1,…,n
作圖,通過直觀判斷確定f(x):第十頁,共四十九頁,編輯于2023年,星期三用MATLAB解擬合問題1.線性最小二乘擬合2.非線性最小二乘擬合第十一頁,共四十九頁,編輯于2023年,星期三用MATLAB作線性最小二乘擬合1.作多項(xiàng)式f(x)=a1xm+…+amx+am+1擬合,可利用已有程序:a=polyfit(x,y,m)2.對超定方程組可得最小二乘意義下的解.,用3.多項(xiàng)式在x處的值y可用以下命令計(jì)算:
y=polyval(a,x)輸出擬合多項(xiàng)式系數(shù)a=[a1,…,am,
am+1](數(shù)組))輸入同長度的數(shù)組x,y擬合多項(xiàng)式次數(shù)第十二頁,共四十九頁,編輯于2023年,星期三即要求出二次多項(xiàng)式:中的使得:例對下面一組數(shù)據(jù)作二次多項(xiàng)式擬合第十三頁,共四十九頁,編輯于2023年,星期三1)輸入以下命令:x=0:0.1:1;y=[-0.4471.9783.286.167.087.347.669.569.489.3011.2];R=[(x.^2)'x'ones(11,1)];A=R\y'MATLAB(zxec1)解法1.用解超定方程的方法2)計(jì)算結(jié)果:A
=-9.810820.1293-0.0317第十四頁,共四十九頁,編輯于2023年,星期三1)輸入以下命令:
x=0:0.1:1;y=[-0.4471.9783.286.167.087.347.669.569.489.3011.2];A=polyfit(x,y,2)z=polyval(A,x);plot(x,y,'k+',x,z,'r')%作出數(shù)據(jù)點(diǎn)和擬合曲線的圖形2)計(jì)算結(jié)果:A=-9.810820.1293-0.0317解法2.用多項(xiàng)式擬合的命令MATLAB(zxec2)第十五頁,共四十九頁,編輯于2023年,星期三1.lsqcurvefit已知數(shù)據(jù)點(diǎn):xdata=(xdata1,xdata2,…,xdatan),ydata=(ydata1,ydata2,…,ydatan)
用MATLAB作非線性最小二乘擬合
MATLAB提供了兩個(gè)求非線性最小二乘擬合的函數(shù):lsqcurvefit和lsqnonlin.兩個(gè)命令都要先建立M文件fun.m,在其中定義函數(shù)f(x),但兩者定義f(x)的方式是不同的,可參考例題.
lsqcurvefit用以求含參量x(向量)的向量值函數(shù)F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T中的參變量x(向量),使得
第十六頁,共四十九頁,編輯于2023年,星期三
輸入格式為:
(1)x=lsqcurvefit(‘fun’,x0,xdata,ydata);(2)x=lsqcurvefit(‘fun’,x0,xdata,ydata,options);(3)x=lsqcurvefit(‘fun’,x0,xdata,ydata,options,’grad’);
(4)[x,options]=lsqcurvefit(‘fun’,x0,xdata,ydata,…);(5)[x,options,funval]=lsqcurvefit(‘fun’,x0,xdata,ydata,…);(6)[x,options,funval,Jacob]=lsqcurvefit(‘fun’,x0,xdata,ydata,…);fun是一個(gè)事先建立的定義函數(shù)F(x,xdata)的M文件,自變量為x和xdata說明:x=lsqcurvefit(‘fun’,x0,xdata,ydata,options);迭代初值已知數(shù)據(jù)點(diǎn)選項(xiàng)見無約束優(yōu)化第十七頁,共四十九頁,編輯于2023年,星期三
lsqnonlin用以求含參量x(向量)的向量值函數(shù)
f(x)=(f1(x),f2(x),…,fn(x))T
中的參量x,使得
最?。渲衒i(x)=f(x,xdatai,ydatai)
=F(x,xdatai)-ydatai
2.lsqnonlin已知數(shù)據(jù)點(diǎn):xdata=(xdata1,xdata2,…,xdatan)
ydata=(ydata1,ydata2,…,ydatan)第十八頁,共四十九頁,編輯于2023年,星期三輸入格式為:
1)x=lsqnonlin(‘fun’,x0);
2)x=lsqnonlin(‘fun’,x0,options);
3)x=lsqnonlin(‘fun’,x0,options‘grad’);
4)[x,options]=lsqnonlin(‘fun’,x0,…);
5)[x,options,funval]=lsqnonlin(‘fun’x0,…);說明:x=lsqnonlin
(‘fun’,x0,options);fun是一個(gè)事先建立的定義函數(shù)f(x)的M文件,自變量為x迭代初值選項(xiàng)見無約束優(yōu)化第十九頁,共四十九頁,編輯于2023年,星期三
例2用下面一組數(shù)據(jù)擬合中的參數(shù)a,b,k該問題即解最優(yōu)化問題:第二十頁,共四十九頁,編輯于2023年,星期三MATLAB(fzxec1)
1)編寫M文件curvefun1.m
functionf=curvefun1(x,tdata)f=x(1)+x(2)*exp(-0.02*x(3)*tdata)%其中x(1)=a;x(2)=b;x(3)=k;2)輸入命令tdata=100:100:1000cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50,6.59];x0=[0.2,0.05,0.05];x=lsqcurvefit('curvefun1',x0,tdata,cdata)f=curvefun1(x,tdata)
F(x,tdata)=,x=(a,b,k)解法1.用命令lsqcurvefit第二十一頁,共四十九頁,編輯于2023年,星期三3)運(yùn)算結(jié)果為:f=0.00430.00510.00560.00590.00610.00620.00620.00630.00630.0063x=0.0063-0.00340.25424)結(jié)論:a=0.0063,b=-0.0034,k=0.2542第二十二頁,共四十九頁,編輯于2023年,星期三MATLAB(fzxec2)
解法2
用命令lsqnonlin
f(x)=F(x,tdata,ctada)=
x=(a,b,k)1)編寫M文件curvefun2.m
functionf=curvefun2(x)tdata=100:100:1000;cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50,6.59];f=x(1)+x(2)*exp(-0.02*x(3)*tdata)-cdata2)輸入命令:x0=[0.2,0.05,0.05];x=lsqnonlin('curvefun2',x0)f=curvefun2(x)函數(shù)curvefun2的自變量是x,cdata和tdata是已知參數(shù),故應(yīng)將cdatatdata的值寫在curvefun2.m中第二十三頁,共四十九頁,編輯于2023年,星期三3)運(yùn)算結(jié)果為f=1.0e-003*(0.2322-0.1243-0.2495-0.2413-0.1668-0.07240.02410.11590.20300.2792x=0.0063-0.00340.2542可以看出,兩個(gè)命令的計(jì)算結(jié)果是相同的.4)結(jié)論:即擬合得a=0.0063b=-0.0034k=0.2542第二十四頁,共四十九頁,編輯于2023年,星期三MATLAB解應(yīng)用問題實(shí)例1.電阻問題2.給藥方案問題*3.水塔流量估計(jì)問題第二十五頁,共四十九頁,編輯于2023年,星期三MATLAB(dianzu1)電阻問題溫度t(oC)20.532.751.073.095.7電阻R()7658268739421032例.由數(shù)據(jù)擬合R=a1t+a2方法1.用命令polyfit(x,y,m)得到a1=3.3940,a2=702.4918方法2.直接用結(jié)果相同.MATLAB(dianzu2)第二十六頁,共四十九頁,編輯于2023年,星期三一室模型:將整個(gè)機(jī)體看作一個(gè)房室,稱中心室,室內(nèi)血藥濃度是均勻的.快速靜脈注射后,濃度立即上升;然后迅速下降.當(dāng)濃度太低時(shí),達(dá)不到預(yù)期的治療效果;當(dāng)濃度太高,又可能導(dǎo)致藥物中毒或副作用太強(qiáng).臨床上,每種藥物有一個(gè)最小有效濃度c1和一個(gè)最大有效濃度c2.設(shè)計(jì)給藥方案時(shí),要使血藥濃度保持在c1~c2之間.本題設(shè)c1=10ug/ml,c2=25ug/ml.擬合問題實(shí)例2給藥方案——一種新藥用于臨床之前,必須設(shè)計(jì)給藥方案.藥物進(jìn)入機(jī)體后通過血液輸送到全身,在這個(gè)過程中不斷地被吸收、分布、代謝,最終排出體外,藥物在血液中的濃度,即單位體積血液中的藥物含量,稱為血藥濃度.第二十七頁,共四十九頁,編輯于2023年,星期三
在實(shí)驗(yàn)方面,對某人用快速靜脈注射方式一次注入該藥物300mg后,在一定時(shí)刻t(h)采集血藥,測得血藥濃度c(ug/ml)如下表:
t(h)0.250.511.523468c(g/ml)19.2118.1515.3614.1012.899.327.455.243.01要設(shè)計(jì)給藥方案,必須知道給藥后血藥濃度隨時(shí)間變化的規(guī)律.從實(shí)驗(yàn)和理論兩方面著手:第二十八頁,共四十九頁,編輯于2023年,星期三給藥方案1.在快速靜脈注射的給藥方式下,研究血藥濃度(單位體積血液中的藥物含量)的變化規(guī)律.tc2cc1O問題2.給定藥物的最小有效濃度和最大治療濃度,設(shè)計(jì)給藥方案:每次注射劑量多大;間隔時(shí)間多長.分析理論:用一室模型研究血藥濃度變化規(guī)律實(shí)驗(yàn):對血藥濃度數(shù)據(jù)作擬合,符合負(fù)指數(shù)變化規(guī)律第二十九頁,共四十九頁,編輯于2023年,星期三3.血液容積v,t=0注射劑量d,血藥濃度立即為d/v.2.藥物排除速率與血藥濃度成正比,比例系數(shù)k(>0)模型假設(shè)1.機(jī)體看作一個(gè)房室,室內(nèi)血藥濃度均勻——一室模型模型建立
在此,d=300mg,t及c(t)在某些點(diǎn)處的值見前表,需經(jīng)擬合求出參數(shù)k、v.第三十頁,共四十九頁,編輯于2023年,星期三用線性最小二乘擬合c(t)MATLAB(lihe1)計(jì)算結(jié)果:d=300;t=[0.250.511.523468];c=[19.2118.1515.3614.1012.899.327.455.243.01];y=log(c);a=polyfit(t,y,1)k=-a(1)v=d/exp(a(2))程序:用非線性最小二乘擬合c(t)第三十一頁,共四十九頁,編輯于2023年,星期三給藥方案設(shè)計(jì)cc2c1Ot設(shè)每次注射劑量D,間隔時(shí)間血藥濃度c(t)
應(yīng)c1c(t)
c2初次劑量D0應(yīng)加大給藥方案記為:2.1.計(jì)算結(jié)果:給藥方案:c1=10,c2=25k=0.2347v=15.02第三十二頁,共四十九頁,編輯于2023年,星期三故可制定給藥方案:即:
首次注射375mg,其余每次注射225mg,注射的間隔時(shí)間為4h.第三十三頁,共四十九頁,編輯于2023年,星期三某居民區(qū)有一供居民用水的圓柱形水塔,一般可以通過測量其水位來估計(jì)水的流量,但面臨的困難是,當(dāng)水塔水位下降到設(shè)定的最低水位時(shí),水泵自動(dòng)啟動(dòng)向水塔供水,到設(shè)定的最高水位時(shí)停止供水,這段時(shí)間無法測量水塔的水位和水泵的供水量.通常水泵每天供水一兩次,每次約兩小時(shí).水塔是一個(gè)高12.2m,直徑17.4m的正圓柱.按照設(shè)計(jì),水塔水位降至約8.2m時(shí),水泵自動(dòng)啟動(dòng),水位升到約10.8m時(shí)水泵停止工作.表1是某一天的水位測量記錄,試估計(jì)任何時(shí)刻(包括水泵正供水時(shí))從水塔流出的水流量,及一天的總用水量.1.問題估計(jì)水塔的流量第三十四頁,共四十九頁,編輯于2023年,星期三第三十五頁,共四十九頁,編輯于2023年,星期三2.流量估計(jì)的解題思路
1、擬合水位~時(shí)間函數(shù)從測量記錄看,一天有兩個(gè)供水時(shí)段(以下稱第1供水時(shí)段和第2供水時(shí)段),和3個(gè)水泵不工作時(shí)段(以下稱第1時(shí)段t=0到t=8.97,第2次時(shí)段t=10.95到t=20.84和第3時(shí)段t=23以后).對第1、2時(shí)段的測量數(shù)據(jù)直接分別作多項(xiàng)式擬合,得到水位函數(shù).為使擬合曲線比較光滑,多項(xiàng)式次數(shù)不要太高,一般在3~6.由于第3時(shí)段只有3個(gè)測量記錄,無法對這一時(shí)段的水位作出較好的擬合.第三十六頁,共四十九頁,編輯于2023年,星期三2、確定流量~時(shí)間函數(shù)對于第1、2時(shí)段只需將水位函數(shù)求導(dǎo)數(shù)即可,對于兩個(gè)供水時(shí)段的流量,則用供水時(shí)段前后(水泵不工作時(shí)段)的流量擬合得到,并且將擬合得到的第2供水時(shí)段流量外推,將第3時(shí)段流量包含在第2供水時(shí)段內(nèi).
3、一天總用水量的估計(jì)總用水量等于兩個(gè)水泵不工作時(shí)段和兩個(gè)供水時(shí)段用水量之和,它們都可以由流量對時(shí)間的積分得到.第三十七頁,共四十九頁,編輯于2023年,星期三3.算法設(shè)計(jì)與編程1.擬合第1、2時(shí)段的水位,并導(dǎo)出流量2.擬合供水時(shí)段的流量3.估計(jì)一天總用水量4.流量及總用水量的檢驗(yàn)第三十八頁,共四十九頁,編輯于2023年,星期三
1.擬合第1時(shí)段的水位,并導(dǎo)出流量設(shè)t,h為已輸入的時(shí)刻和水位測量記錄(水泵啟動(dòng)的4個(gè)時(shí)刻不輸入),第1時(shí)段各時(shí)刻的流量可如下得:1)c1=polyfit(t(1:10),h(1:10),3);
%用3次多項(xiàng)式擬合第1時(shí)段水位,c1輸出3次多項(xiàng)式的系數(shù)2)a1=polyder(c1);
%a1輸出多項(xiàng)式(系數(shù)為c1)導(dǎo)數(shù)的系數(shù)
3)tp1=0:0.1:9;
x1=-polyval(a1,tp1);%x1輸出多項(xiàng)式(系數(shù)a1)在tp1點(diǎn)的函數(shù)值(取負(fù)后邊為正值),即tp1時(shí)刻的流量
MATLAB(llgj1)4)流量函數(shù)為:第三十九頁,共四十九頁,編輯于2023年,星期三
擬合第2時(shí)段的水位,并導(dǎo)出流量設(shè)t,h為已輸入的時(shí)刻和水位測量記錄(水泵啟動(dòng)的4個(gè)時(shí)刻不輸入),第2時(shí)段各時(shí)刻的流量可如下得:1)c2=polyfit(t(10.9:21),h(10.9:21),3);
%用3次多項(xiàng)式擬合第2時(shí)段水位,c2輸出3次多項(xiàng)式的系數(shù)2)a2=polyder(c2);
%a2輸出多項(xiàng)式(系數(shù)為c2)導(dǎo)數(shù)的系數(shù)
3)tp2=10.9:0.1:21;x2=-polyval(a2,tp2);%x2輸出多項(xiàng)式(系數(shù)為a2)在tp2點(diǎn)的函數(shù)值(取負(fù)后邊為正值),即tp2時(shí)刻的流量MATLAB(llgj2)4)流量函數(shù)為:第四十頁,共四十九頁,編輯于2023年,星期三
2.擬合供水時(shí)段的流量在第1供水時(shí)段(t=9~11)之前(即第1時(shí)段)和之后(即第2時(shí)段)各取幾點(diǎn),其流量已經(jīng)得到,用它們擬合第1供水時(shí)段的流量.為使流量函數(shù)在t=9和t=11連續(xù),我們簡單地只取4個(gè)點(diǎn),擬合3次多項(xiàng)式(即曲線必過這4個(gè)點(diǎn)),實(shí)現(xiàn)如下:
xx1=-polyval(a1,[89]);%取第1時(shí)段在t=8,9的流量
xx2=-polyval(a2,[1112]);%取第2時(shí)段在t=11,12的流量
xx12=[xx1xx2];
c12=polyfit([891112],xx12,3);%擬合3次多項(xiàng)式
tp12=9:0.1:11;
x12=polyval(c12,tp12);%x12輸出第1供水時(shí)段各時(shí)刻的流量MATLAB(llgj3)擬合的流量函數(shù)為:第四十一頁,共四十九頁,編輯于2023年,星期三在第2供水時(shí)段之前取t=20,20.8兩點(diǎn)的流水量,在該時(shí)刻之后(第3時(shí)段)僅有3個(gè)水位記錄,我們用差分得到流量,然后用這4個(gè)數(shù)值擬合第2供水時(shí)段的流量如下:
dt3=diff(t(22:24));
%最后3個(gè)時(shí)刻的兩兩之差
dh3=diff(h(22:24));
%最后3個(gè)水位的兩兩之差dht3=-dh3./dt3;
%t(22)和t(23)的流量t3=[2020.8t(22)t(23)];
xx3=[-polyval(a2,t3(1:2),dht3)];
%取t3各時(shí)刻的流量
c3=polyfit(t3,xx3,3);%擬合3次多項(xiàng)式
t3=20.8:0.1:24;
x3=polyval(c3,tp3);%x3輸出第2供水時(shí)段(外推至t=24)各時(shí)刻的流量MATLAB(llgj4)擬合的流量函數(shù)為:第四十二頁,共四十九頁,編輯于2023年,星期三
3.一天總用水量的估計(jì)第1、2時(shí)段和第1、2供水時(shí)段流量的積分之和,就是一天總用水量.雖然諸時(shí)段的流量已表為多項(xiàng)式函數(shù),積分可以解析地算出,這里仍用數(shù)值積分計(jì)算如下:
y1=0.1*trapz(x1);
%第1時(shí)段用水量(仍按高度計(jì)),
0.1為積分步長
y2=0.1*trapz(x2);
%第2時(shí)段用水量
y12=0.1*trapz(x12);
%第1供水時(shí)段用水量
y3=0.1*trapz(x3);
%第2供水時(shí)段用水量
y=(y1+y2+y12+y3)*237.8*0.01;%一天總用水量()計(jì)算結(jié)果:y1=146.2,y2=266.8,y12=47.4,y3=77.3,y=1250.4MATLAB(llgjz)第四十三頁,共四十九頁,編輯于2023年,星期三
4.流量及總用水量的檢驗(yàn)計(jì)算出的各時(shí)刻的流量可用水位記錄的數(shù)值微分來檢驗(yàn).用水量y1可用第1時(shí)段水位測量記錄中下降高度968-822=146來檢驗(yàn),類似地,y2用1082-822=260檢驗(yàn).供水時(shí)段流量的一種檢驗(yàn)方法如下:供水時(shí)段的用水量加上水位上升值260是該時(shí)段泵入的水量,除以時(shí)段長度得到水泵的功率(單位時(shí)間泵入的水量),而兩個(gè)供水時(shí)段水泵的功率應(yīng)大致相等.第1、2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車批量訂購合同4篇
- 2025年度體育賽事代理運(yùn)營管理合同樣本4篇
- 2025年度生態(tài)停車場車位購置協(xié)議4篇
- 生物活性營養(yǎng)土項(xiàng)目可行性研究報(bào)告模板范文(立項(xiàng)備案項(xiàng)目申請)
- 2025年新生入學(xué)教育法律協(xié)議書(綜合服務(wù))3篇
- 2025年度個(gè)人信用評(píng)分服務(wù)協(xié)議3篇
- 2025年度個(gè)人股權(quán)交易合同范本:股權(quán)轉(zhuǎn)讓流程與稅務(wù)籌劃4篇
- 2025年度企業(yè)項(xiàng)目合作協(xié)議范本4篇
- 2025年浙江澤興環(huán)保工程有限公司招聘筆試參考題庫含答案解析
- 二零二五年度林業(yè)生態(tài)恢復(fù)苗木采購合同文本4篇
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計(jì)規(guī)范》編制說明
- PMC主管年終總結(jié)報(bào)告
- 售樓部保安管理培訓(xùn)
- 倉儲(chǔ)培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級(jí)
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測》真題卷及答案解析
- 橋梁監(jiān)測監(jiān)控實(shí)施方案
評(píng)論
0/150
提交評(píng)論