高中數學單元測試平面向量演練_第1頁
高中數學單元測試平面向量演練_第2頁
高中數學單元測試平面向量演練_第3頁
高中數學單元測試平面向量演練_第4頁
高中數學單元測試平面向量演練_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學必求其心得,業(yè)必貴于專精學必求其心得,業(yè)必貴于專精學必求其心得,業(yè)必貴于專精ABABCDE1,在所在的平面上有一點,滿足,則與的面積之比是()2,如圖,在ΔABC中,D、E為邊AB的兩個三等分點,eq\o(CA,\s\up6(→))=3a,eq\o(CB,\s\up6(→))=2b,求eq\o(CD,\s\up6(→)),eq\o(CE,\s\up6(→)).3,設是不共線的向量,已知向量,若A,B,D三點共線,求k的值4,已知A、B、C、P為平面內四點,求證:A、B、C三點在一條直線上的充要條件是存在一對實數m、n,使eq\o(PC,\s\up6(→))=meq\o(PA,\s\up6(→))+neq\o(PB,\s\up6(→)),且m+n=1.5,已知ABCD的兩條對角線AC與BD交于E,O是任意一點,求證:+++=46,已知、是兩個不共線的向量,若它們起點相同,、、t(+)三向量的終點在一直線上,則實數t=_________。7,若則向量的關系是()A.平行 B.重合C.垂直 D.不確定8,已知,且,試求t關于k的函數9,在△OAB中,,,AD與BC交于M點,設,(1)試用和表示向量(2)在線段AC上取一點E,線段BD上取一點F,使EF過M點,設,。BCABCAOMD10,在△OAB中,,AD與BC交于點M,設=,=,用,表示.ABCQRP11,已知是所在平面內一點,的中點為,的中點為,的中點為.證明:只有唯一的一點使得與重合.ABCQRPBACPNM12,在△ABC中,已知AM︰AB=1︰3,AN︰AC=1︰4,BN與BACPNM,試用表示13,已知向量,,若∥,則銳角等于()14,已知點O(0,0),A(1,2),B(4,5)及,求(1)t為何值時,P在x軸上?P在y軸上?P在第二象限。(2)四邊形OABP能否構成為平行四邊形?若能,求出相應的t值;若不能,請說明理由。15,在中,,.若點滿足,則()A. B. C. D.16,如圖設P、Q為△ABC內的兩點,且,=+,則△ABP的面積與△ABQ的面之比為()A.B.C.D.ABCHM17,如圖,在△中,已知,,,于,為的中點,若,則.18,已知向量,若不超過5,則的取值范圍是 .19,已知向量,,則的最大值為 20,21,在△ABC中,=(2,3),=(1,k),且△ABC的一個內角為直角,求k值22,知為的三個內角的對邊,向量.若,且,則角的大小分別為()A. B.C. D.24,已知,且關于的方程有實根,則與的夾角的取值范圍是()A。[0,]B。C。D。25,在△ABC中,a,b,c分別為三個內角A,B,C所對的邊,設向量,若,則角A的大小為()A.B。C。D。26己知向量,與的夾角為60°,直線與圓的位置關系是()A.相切B.相交C.相離 D.隨的值而定27,設平面上向量與不共線,證明向量與垂直,當兩個向量與的模相等,求角28,在△ABC中,已知.(1)求AB邊的長度;(2)證明:;(3)若,求.29,證明:三角形重心與頂點的距離等于它到對邊中點的距離的兩倍。30,在△ABC中,已知向量,則△ABC為() A.三邊均不相等的三角形 B.直角三角形 C.等腰非等邊三角形 D.等邊三角形31,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論