2024學(xué)年上海市上海大學(xué)附屬中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2024學(xué)年上海市上海大學(xué)附屬中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2024學(xué)年上海市上海大學(xué)附屬中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2024學(xué)年上海市上海大學(xué)附屬中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2024學(xué)年上海市上海大學(xué)附屬中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年上海市上海大學(xué)附屬中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線有如下光學(xué)性質(zhì):平行于拋物線對(duì)稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線的焦點(diǎn)為F,一條平行于y軸的光線從點(diǎn)射出,經(jīng)過拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則經(jīng)點(diǎn)B反射后的反射光線必過點(diǎn)()A. B.C. D.2.若曲線的一條切線與直線垂直,則的方程為()A. B.C. D.3.“”是直線與直線平行的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)的值為()A. B.C.8 D.5.已知集合,則()A. B.C. D.6.已知函數(shù),那么的值為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.8.拋物線y2=4x的焦點(diǎn)坐標(biāo)是A.(0,2) B.(0,1)C.(2,0) D.(1,0)9.《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次變低)5個(gè)人共出100錢,按照爵位從高到低每人所出錢數(shù)成遞增的等差數(shù)列,這5個(gè)人各出多少錢?”在這個(gè)問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.16C.18 D.2010.用反證法證明“若a,b∈R,,則a,b不全為0”時(shí),假設(shè)正確的是()A.a,b中只有一個(gè)為0 B.a,b至少一個(gè)不為0C.a,b至少有一個(gè)為0 D.a,b全為011.如圖,用4種不同的顏色對(duì)A,B,C,D四個(gè)區(qū)域涂色,要求相鄰的兩個(gè)區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種12.已知橢圓方程為,點(diǎn)在橢圓上,右焦點(diǎn)為F,過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn),若,則橢圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.半徑為R的圓外接于,且,若,則面積的最大值為________.14.已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)坐標(biāo)是,則該拋物線的標(biāo)準(zhǔn)方程為___________15.若存在實(shí)常數(shù)k和b,使得函數(shù)F(x)和G(x)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命題:①F(x)=f(x)﹣g(x)內(nèi)單調(diào)遞增;②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];④f(x)和h(x)之間存在唯一的“隔離直線”y=2x﹣e其中真命題為_____(請(qǐng)?zhí)钏姓_命題的序號(hào))16.已知是橢圓的左、右焦點(diǎn),在橢圓上運(yùn)動(dòng),當(dāng)?shù)闹底钚r(shí),的面積為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在矩形中,是的中點(diǎn),是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點(diǎn),求證:直線平面;18.(12分)已知O為坐標(biāo)原點(diǎn),點(diǎn)P在拋物線C:上,點(diǎn)F為拋物線C的焦點(diǎn),記P到直線的距離為d,且.(1)求拋物線C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)的直線l與拋物線C相切,求直線l的方程.19.(12分)2021年2月12日,辛丑牛年大年初一,由賈玲導(dǎo)演的電影《你好,李煥英》上映,截至到2月21日22點(diǎn)8分,票房攀升至40.25億,反超同期上映的《唐人街探案3》,迎來了2021春節(jié)檔最具戲劇性的一幕.正是因?yàn)橛捌心概g的這份簡單、純粹、誠摯的情感觸碰了人們內(nèi)心柔軟的地方,打動(dòng)了萬千觀眾,才贏得了良好的口碑,不少觀眾都流下了感動(dòng)的淚水.影片結(jié)束后,某電影院工作人員當(dāng)日隨機(jī)抽查了100名觀看《你好,煥英》的觀眾,詢問他們?cè)谟^看影片的過程中是否“流淚”,得到以下表格:男性觀眾女性觀眾合計(jì)流淚20沒有流淚520合計(jì)(1)完成表格中的數(shù)據(jù),并判斷是否有99.9%的把握認(rèn)為觀眾在觀看影片的過程中流淚與性別有關(guān)?(2)以分層抽樣的方式,從流淚與沒有流淚的觀眾中抽取5人,然后從這5人中再隨機(jī)抽取2人,求這2人都流淚的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,20.(12分)已知函數(shù)在處取得極值7(1)求的值;(2)求函數(shù)在區(qū)間上的最大值21.(12分)已知命題:方程有實(shí)數(shù)解,命題:,.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若為假命題,且為真命題,求實(shí)數(shù)的取值范圍.22.(10分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓的方程;(2)若,分別為橢圓的上,下頂點(diǎn),過點(diǎn)且斜率為的直線交橢圓于另一點(diǎn)(異于橢圓的右頂點(diǎn)),交軸于點(diǎn),直線與直線相交于點(diǎn).求證:直線的斜率為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項(xiàng)可得答案,【題目詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因?yàn)榉瓷涔饩€平行于y軸,根據(jù)選項(xiàng)可得D正確,故選:D2、A【解題分析】兩直線垂直,斜率之積為,曲線與直線相切,聯(lián)立方程令.【題目詳解】法一:直線,所以,所以切線的,設(shè)切線的方程為,聯(lián)立方程,所以,令,解得,所以切線方程為.法二:直線,所以,所以切線的,,所以令,所以,帶入曲線方程得切點(diǎn)坐標(biāo)為,所以切線方程為,化簡得.故選:A.3、C【解題分析】先根據(jù)直線平行的充要條件求出a,然后可得.【題目詳解】若,則,,顯然平行;若直線,則且,即.故“”是直線與直線平行的充要條件.故選:C4、B【解題分析】化簡方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【題目詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以,解得.故選:B.5、D【解題分析】由集合的關(guān)系及交集運(yùn)算,逐項(xiàng)判斷即可得解.【題目詳解】因?yàn)榧?,,所以,?故選:D.【題目點(diǎn)撥】本題考查了集合關(guān)系的判斷及集合的交集運(yùn)算,考查了運(yùn)算求解能力,屬于基礎(chǔ)題.6、D【解題分析】直接求導(dǎo),代入計(jì)算即可.【題目詳解】,故.故選:D.7、B【解題分析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【題目詳解】,,,;,【題目點(diǎn)撥】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎(chǔ)題.8、D【解題分析】的焦點(diǎn)坐標(biāo)為,故選D.【考點(diǎn)】拋物線的性質(zhì)【名師點(diǎn)睛】本題考查拋物線的定義.解析幾何是中學(xué)數(shù)學(xué)的一個(gè)重要分支,圓錐曲線是解析幾何的重要內(nèi)容,它們的定義、標(biāo)準(zhǔn)方程、簡單幾何性質(zhì)是我們要重點(diǎn)掌握的內(nèi)容,一定要熟記掌握9、B【解題分析】由題可知這是一個(gè)等差數(shù)列,前項(xiàng)和,,列式求基本量即可.【題目詳解】設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項(xiàng)和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:B10、D【解題分析】把要證的結(jié)論否定之后,即得所求的反設(shè)【題目詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D11、B【解題分析】按涂色順序進(jìn)行分四步,根據(jù)分步乘法計(jì)數(shù)原理可得解.【題目詳解】按涂色順序進(jìn)行分四步:涂A部分時(shí),有4種涂法;涂B部分時(shí),有3種涂法;涂C部分時(shí),有2種涂法;涂D部分時(shí),有2種涂法.由分步乘法計(jì)數(shù)原理,得不同的涂色方法共有種.故選:B.12、A【解題分析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【題目詳解】由點(diǎn)在橢圓上得,由橢圓的對(duì)稱性可得,則,故橢圓方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】利用正弦定理將已知條件轉(zhuǎn)化為邊之間的關(guān)系,然后用余弦定理求得C;利用三角形面積公式,結(jié)合兩角差的正弦函數(shù)公式和二倍角公式得,再利用輔助角公式得,最后利用函數(shù)的值域計(jì)算得結(jié)論.【題目詳解】因?yàn)樗杂烧叶ɡ淼茫?,即,所以由余弦定理可得:,又,?由正弦定理得:,,所以,所以當(dāng)時(shí),S最大,.若,則面積的最大值為.故答案為:.【題目點(diǎn)撥】本題考查了兩角和與差的三角函數(shù)公式,二倍角公式及應(yīng)用,正弦定理,余弦定理,三角形面積公式,函數(shù)的圖象與性質(zhì),屬于中檔題.14、【解題分析】根據(jù)焦點(diǎn)坐標(biāo)即可得到拋物線的標(biāo)準(zhǔn)方程【題目詳解】因?yàn)閽佄锞€的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)坐標(biāo)是,所以,解得,拋物線的標(biāo)準(zhǔn)方程為故答案為:15、①②④【解題分析】①求出F(x)=f(x)﹣g(x)的導(dǎo)數(shù),檢驗(yàn)在x∈(,0)內(nèi)的導(dǎo)數(shù)符號(hào),即可判斷;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,x2≥kx+b對(duì)一切實(shí)數(shù)x成立,即有△1≤0,又kx+b對(duì)一切x<0成立,△2≤0,k≤0,b≤0,根據(jù)不等式的性質(zhì),求出k,b的范圍,即可判斷②③;④存在f(x)和g(x)的隔離直線,那么該直線過這個(gè)公共點(diǎn),設(shè)隔離直線的斜率為k.則隔離直線,構(gòu)造函數(shù),求出函數(shù)函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)求出函數(shù)的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F(xiàn)′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)內(nèi)單調(diào)遞增,故①對(duì);②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對(duì)一切實(shí)數(shù)x成立,即有△1≤0,k2+4b≤0,又kx+b對(duì)一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k?﹣4≤k≤0,同理?﹣4≤b≤0,故②對(duì),③錯(cuò);④函數(shù)f(x)和h(x)的圖象在x處有公共點(diǎn),因此存在f(x)和g(x)的隔離直線,那么該直線過這個(gè)公共點(diǎn),設(shè)隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0當(dāng)x∈R恒成立,則△≤0,只有k=2,此時(shí)直線方程為:y=2x﹣e,下面證明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),當(dāng)x時(shí),G′(x)=0,當(dāng)0<x時(shí),G′(x)<0,當(dāng)x時(shí),G′(x)>0,則當(dāng)x時(shí),G(x)取到極小值,極小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,則g(x)≤2x﹣e,當(dāng)x>0時(shí)恒成立∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2x﹣e,故④正確故答案為:①②④【題目點(diǎn)撥】本題以命題的真假判斷與應(yīng)用為載體,考查新定義,關(guān)鍵是對(duì)新定義的理解,考查函數(shù)的求導(dǎo),利用導(dǎo)數(shù)求最值,屬于難題.16、【解題分析】根據(jù)橢圓定義得出,進(jìn)而對(duì)進(jìn)行化簡,結(jié)合基本不等式得出的最小值,并求出的值,進(jìn)而求出面積.【題目詳解】由橢圓定義可知,,所以,,當(dāng)且僅當(dāng),即時(shí)取“=”.又,所以.所以,由勾股定理可知:,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為二面角的平面角,理由見解析(2)證明見解析(3)證明見解析【解題分析】(1)根據(jù),結(jié)合二面角定義得到答案.(2)證明平面得到,得到平面,得到證明.(3)延長,交于點(diǎn),連接,證明即可.【小問1詳解】連接,則,,故為二面角的平面角.【小問2詳解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小問3詳解】延長,交于點(diǎn),連接,易知,故故是的中點(diǎn),是線段的中點(diǎn),故,平面,且平面,故直線平面.18、(1);(2)或.【解題分析】(1)根據(jù)拋物線的定義進(jìn)行求解即可;(2)根據(jù)直線l是否存在斜率分類討論,結(jié)合一元二次方程根的判別式進(jìn)行求解即可.【小問1詳解】因?yàn)椋訮到直線的距離等于,所以拋物線C的準(zhǔn)線為,所以,,所以拋物線C的標(biāo)準(zhǔn)方程為;【小問2詳解】當(dāng)直線l的斜率不存在時(shí),方程為,此時(shí)直線l恰與拋物線C相切當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,聯(lián)立方程,得若,顯然不合題意;若,則,解得此時(shí)直線l的方程為綜上,直線l與拋物線C相切時(shí),l的方程為或.19、(1)填表見解析;有99.9%的把握認(rèn)為觀眾在觀看影片的過程中流淚與性別有關(guān);(2)【解題分析】(1)由已知數(shù)據(jù)可完善列聯(lián)表,然后計(jì)算可得結(jié)論;(2)根據(jù)分層抽樣定義求出5人中流淚與沒有流淚的觀眾人數(shù)并編號(hào),用列舉法寫出作任取2人的所有基本事件,并得出2人都流淚的基本事件,計(jì)數(shù)后可計(jì)算概率【題目詳解】解:(1)男性觀眾女性觀眾合計(jì)流淚206080沒有流淚15520合計(jì)3565100所以有99.9%的把握認(rèn)為觀眾在觀看影片的過程中流淚與性別有關(guān)(2)以分層抽樣的方式,從流淚與沒有流淚的觀眾中抽取5人,則流淚的觀眾抽到人,記為,,,,沒有流淚的觀眾抽到人,記為從這5人中抽2人有10種情況,分別是,,,,,,,,,其中這2人都流淚有6種情況,分別是,,,,,所以所求概率20、(1);(2).【解題分析】(1)先對(duì)函數(shù)求導(dǎo),根據(jù)題中條件,列出方程組求解,即可得出結(jié)果;(2)先由(1)得到,導(dǎo)數(shù)的方法研究其單調(diào)性,進(jìn)而可求出最值.【題目

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論