版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆廣東省廣州荔灣區(qū)廣雅中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是雙曲線的兩個(gè)焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在上且,則的面積為()A. B.3C. D.22.雙曲線的漸近線方程和離心率分別是A. B.C. D.3.《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次變低)5個(gè)人共出100錢,按照爵位從高到低每人所出錢數(shù)成遞增的等差數(shù)列,這5個(gè)人各出多少錢?”在這個(gè)問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.16C.18 D.204.年底以來,我國多次在重要場合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負(fù)抵消,實(shí)現(xiàn)二氧化碳“零排放”.二氧化碳的分子是由一個(gè)碳原子和兩個(gè)氧原子構(gòu)成的,其結(jié)構(gòu)式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構(gòu)成的不同二氧化碳分子共有()A.種 B.種C.種 D.種5.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.6.已知點(diǎn)、為橢圓的左、右焦點(diǎn),若點(diǎn)為橢圓上一動(dòng)點(diǎn),則使得的點(diǎn)的個(gè)數(shù)為()A. B.C. D.不能確定7.拋物線的頂點(diǎn)在原點(diǎn),對稱軸是x軸,點(diǎn)在拋物線上,則拋物線的方程為()A. B.C. D.8.已知x>0、y>0,且1,若恒成立,則實(shí)數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)9.已知,則()A. B.1C. D.10.?dāng)?shù)列1,6,15,28,45,...中的每一項(xiàng)都可用如圖所示的六邊形表示出來,故稱它們?yōu)榱呅螖?shù),那么第10個(gè)六邊形數(shù)為()A.153 B.190C.231 D.27611.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.12.已知函數(shù),在上隨機(jī)取一個(gè)實(shí)數(shù),則使得成立的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,,使得成立,則實(shí)數(shù)a的取值范圍是___________.14.已知數(shù)列滿足,則其通項(xiàng)公式________15.若函數(shù)處取極值,則___________16.4與16的等比中項(xiàng)是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關(guān)系,并說明理由;(2)若過點(diǎn)的直線l與圓C相切,求直線l的方程.18.(12分)如圖,在棱長為的正方體中,為中點(diǎn)(1)求二面角的大??;(2)探究線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說明理由19.(12分)如圖所示,在正方體中,E是棱的中點(diǎn).(Ⅰ)求直線BE與平面所成的角的正弦值;(Ⅱ)在棱上是否存在一點(diǎn)F,使平面?證明你的結(jié)論.20.(12分)若數(shù)列的前n項(xiàng)和滿足,(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和21.(12分)已知O為坐標(biāo)原點(diǎn),點(diǎn),設(shè)動(dòng)點(diǎn)W到直線的距離為d,且,.(1)記動(dòng)點(diǎn)W的軌跡為曲線C,求曲線C的方程;(2)若直線l與曲線C交于A,B兩點(diǎn),直線與曲線C交于,兩點(diǎn),直線l與的交點(diǎn)為P(P不在曲線C上),且,設(shè)直線l,的斜率分別為k,.求證:為定值.22.(10分)某地區(qū)2021年清明節(jié)前后3天每天下雨的概率為50%,通過模擬實(shí)驗(yàn)的方法來計(jì)算該地區(qū)這3天中恰好有2天下雨的概率.用隨機(jī)數(shù)x(,且)表示是否下雨:當(dāng)時(shí)表示該地區(qū)下雨,當(dāng)時(shí),表示該地區(qū)不下雨,從隨機(jī)數(shù)表中隨機(jī)取得20組數(shù)如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根據(jù)上述數(shù)表求出該地區(qū)清明節(jié)前后3天中恰好有2天下雨的概率;(2)從2012年到2020年該地區(qū)清明節(jié)當(dāng)天降雨量(單位:)如表:(其中降雨量為0表示沒有下雨).時(shí)間2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221經(jīng)研究表明:從2012年至2021年,該地區(qū)清明節(jié)有降雨的年份的降雨量y與年份t成線性回歸,求回歸直線方程,并計(jì)算如果該地區(qū)2021年()清明節(jié)有降雨的話,降雨量為多少?(精確到0.01)參考公式:,參考數(shù)據(jù):,,,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計(jì)算即可.【題目詳解】由已知,不妨設(shè),則,因?yàn)?,所以點(diǎn)在以為直徑的圓上,即是以P為直角頂點(diǎn)的直角三角形,故,即,又,所以,解得,所以故選:B【點(diǎn)晴】本題考查雙曲線中焦點(diǎn)三角形面積的計(jì)算問題,涉及到雙曲線的定義,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.2、A【解題分析】先根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求得其特征參數(shù)的值,再利用雙曲線漸近線方程公式和離心率定義分別計(jì)算即可.【題目詳解】雙曲線的,雙曲線的漸近線方程為,離心率為,故選A.【題目點(diǎn)撥】本題主要考查雙曲線的漸近線及離心率,屬于簡單題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解3、B【解題分析】由題可知這是一個(gè)等差數(shù)列,前項(xiàng)和,,列式求基本量即可.【題目詳解】設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項(xiàng)和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:B4、C【解題分析】分兩種情況討論:兩個(gè)氧原子相同、兩個(gè)氧原子不同,分別計(jì)算出兩種情況下二氧化碳分子的個(gè)數(shù),利用分類加法計(jì)數(shù)原理可得結(jié)果.【題目詳解】分以下兩種情況討論:若兩個(gè)氧原子相同,此時(shí)二氧化碳分子共有種;若兩個(gè)氧原子不同,此時(shí)二氧化碳分子共有種.由分類加法計(jì)數(shù)原理可知,由上述同位素可構(gòu)成的不同二氧化碳分子共有種.故選:C.5、A【解題分析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【題目詳解】由題意得,圖象上某點(diǎn)處的切線斜率隨增大而減小,滿足要求的只有A故選:A6、B【解題分析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【題目詳解】在橢圓中,,,,則,,可得,所以,,解得,此時(shí)點(diǎn)位于橢圓短軸的頂點(diǎn).因此,滿足條件的點(diǎn)的個(gè)數(shù)為.故選:B.7、B【解題分析】首先根據(jù)題意設(shè)出拋物線的方程,利用點(diǎn)在曲線上的條件為點(diǎn)的坐標(biāo)滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【題目詳解】解:根據(jù)題意設(shè)出拋物線的方程,因?yàn)辄c(diǎn)在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.8、B【解題分析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【題目詳解】由題設(shè),,當(dāng)且僅當(dāng)時(shí)等號成立,∴要使恒成立,只需,故,∴.故選:B.9、B【解題分析】先根據(jù)共軛復(fù)數(shù)的定義可得,再根據(jù)復(fù)數(shù)的運(yùn)算法則即可求出【題目詳解】因?yàn)?,所以故選:B10、B【解題分析】細(xì)心觀察,尋求相鄰項(xiàng)及項(xiàng)與序號之間的關(guān)系,同時(shí)聯(lián)系相關(guān)知識,如等差數(shù)列、等比數(shù)列等,結(jié)合圖形可知,,,,,,,據(jù)此即可求解.【題目詳解】由題意知,數(shù)列的各項(xiàng)為1,6,15,28,45,...所以,,,,,,所以.故選:B【題目點(diǎn)撥】本題考查合情推理中的歸納推理;考查邏輯推理能力;觀察分析、尋求規(guī)律是求解本題的關(guān)鍵;屬于中檔題、探索型試題.11、A【解題分析】由題設(shè)及橢圓方程可得,即可求參數(shù)a的值.【題目詳解】由題設(shè)易知:橢圓參數(shù),即有,可得故選:A12、B【解題分析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【題目詳解】由,得,解得,在區(qū)間上隨機(jī)取一實(shí)數(shù),則實(shí)數(shù)滿足不等式的概率為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】由題可得,求導(dǎo)可得的單調(diào)性,將的最小值代入,即得.【題目詳解】∵,,使得成立,∴由,得,當(dāng)時(shí),,∴在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為又在上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為,∴,即實(shí)數(shù)的取值范圍是故答案為:.14、【解題分析】利用累加法即可求出數(shù)列的通項(xiàng)公式.【題目詳解】因?yàn)椋?,所以,,,…,,把以上個(gè)式子相加,得,即,所以.故答案為:.15、3【解題分析】=.因?yàn)閒(x)在1處取極值,所以1是f′(x)=0的根,將x=1代入得a=3.故答案為3.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值16、±8【解題分析】解析由G2=4×16=64得G=±8.答案±8三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)圓C與圓M相交,理由見解析(2)或【解題分析】(1)利用圓心距與半徑的關(guān)系即可判斷結(jié)果;(2)討論,當(dāng)直線l的斜率不存在時(shí)則方程為,當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,利用圓心到直線的距離等于半徑計(jì)算即可得出結(jié)果.【小問1詳解】把圓M的方程化成標(biāo)準(zhǔn)方程,得,圓心為,半徑.圓C的圓心為,半徑,因?yàn)?,所以圓C與圓M相交,【小問2詳解】①當(dāng)直線l的斜率不存在時(shí),直線l的方程為到圓心C距離為2,滿足題意;②當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.18、(1)(2)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)【解題分析】(1)建立空間直角坐標(biāo)系,分別寫出點(diǎn)的坐標(biāo),求出兩個(gè)平面的法向量代入公式求解即可;(2)假設(shè)存在,設(shè),利用相等向量求出坐標(biāo),利用線面平行的向量法代入公式計(jì)算即可.【小問1詳解】如下圖所示,以為原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,,,,,.所以,設(shè)平面的法向量,所以,即,令,則,,所以,連接,因?yàn)?,,,平面,平面,平面,所以平面,所以為平面的一個(gè)法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問2詳解】假設(shè)在線段上存在點(diǎn),使得平面,設(shè),,,因?yàn)槠矫?,所以,即所以,即解得所以在線段上存在點(diǎn),使得平面,此時(shí)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)19、(1);(2)詳見解析【解題分析】設(shè)正方體的棱長為1.如圖所示,以為單位正交基底建立空間直角坐標(biāo)系.(Ⅰ)依題意,得,所以.在正方體中,因?yàn)?所以是平面的一個(gè)法向量,設(shè)直線BE和平面所成的角為,則.即直線BE和平面所成的角的正弦值為.(Ⅱ)在棱上存在點(diǎn)F,使.事實(shí)上,如圖所示,分別取和CD的中點(diǎn)F,G,連結(jié).因,且,所以四邊形是平行四邊形,因此.又E,G分別為,CD的中點(diǎn),所以,從而.這說明,B,G,E共面,所以.因四邊形與皆為正方形,F(xiàn),G分別為和CD的中點(diǎn),所以,且,因此四邊形是平行四邊形,所以.而,,故.20、(1)(2)【解題分析】(1)根據(jù)遞推關(guān)系結(jié)合等比數(shù)列的定義可求解;(2)根據(jù)(1)化簡,利用裂項(xiàng)相消法求出數(shù)列的前n項(xiàng)和.小問1詳解】當(dāng)時(shí),,所以,即,當(dāng)時(shí),,得,則所以數(shù)列是首項(xiàng)為﹣1,公比為3的等比數(shù)列所以【小問2詳解】由(1)得:所以,所以21、(1)(2)證明見解析【解題分析】(1)設(shè)點(diǎn),由即所以化簡即可得到答案.(2)設(shè),,設(shè)直線l的方程為:與(1)中W的軌跡方程聯(lián)立,得出韋達(dá)定理,求出,同理設(shè)直線的方程為:,得出,再根據(jù)從而可證明結(jié)論.【小問1詳解】設(shè)點(diǎn),因?yàn)?,所以,因?yàn)?,所以所以所以所以所以C的方程為:【小問2詳解】設(shè),,設(shè)直線l的方程為:,則由得:所以,,所以所以設(shè)直線的方程為:,則同理可得因所以即,即,即解得,即所以為定值.22、(1),;(2);該地區(qū)2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44693.1-2024危險(xiǎn)化學(xué)品企業(yè)工藝平穩(wěn)性第1部分:管理導(dǎo)則
- 低空物流基礎(chǔ)設(shè)施建設(shè)實(shí)施方案
- 地質(zhì)實(shí)習(xí)自我鑒定
- 團(tuán)隊(duì)拓展訓(xùn)練心得體會
- 關(guān)于溺水自救的觀后感500字(30篇)
- 配電高級工試題練習(xí)試題及答案
- 天英學(xué)校養(yǎng)老護(hù)理員(五級)理論練習(xí)試卷附答案
- 高考數(shù)學(xué)復(fù)習(xí)解答題提高第一輪專題復(fù)習(xí)專題03圓錐曲線中的三角形(四邊形)面積問題(含定值、最值、范圍問題)(典型題型歸類訓(xùn)練)(學(xué)生版+解析)
- 中小學(xué)幼兒園安全防范工作責(zé)任清單
- 高中英語語法-動(dòng)詞及動(dòng)詞詞組
- 工程進(jìn)度確認(rèn)單
- 萬兆光交換機(jī)配置指導(dǎo)手冊
- 出租廠房建筑和設(shè)施安全檢查表
- 固體壓強(qiáng)復(fù)習(xí)課件
- SN∕T 5398-2022 進(jìn)出境水果冷處理操作規(guī)程
- 防煤氣中毒安全隱患排查表
- 呂氏春秋卷十一 仲冬紀(jì) 當(dāng)務(wù)原文及翻譯
- 《跨文化管理》教案
- 如何克服考試焦慮主題班會
- 【絕對實(shí)用】食堂庫房檢查記錄表
- GB∕T 18387-2017 電動(dòng)車輛的電磁場發(fā)射強(qiáng)度的限值和測量方法
評論
0/150
提交評論