版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
新疆阿克蘇地區(qū)烏什縣二中2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是().A. B. C. D.2.我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻.這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.3.中國古代用算籌來進行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.4.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.15.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.6.函數(shù)的圖像大致為().A. B.C. D.7.若向量,,則與共線的向量可以是()A. B. C. D.8.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.9.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為()①②③④⑤A.1個 B.2個 C.3個 D.4個10.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.11.已知集合,,則A. B.C. D.12.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在和上均單調(diào)遞增,則實數(shù)的取值范圍為________.14.在中,若,則的范圍為________.15.已知向量,,,則__________.16.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正項數(shù)列的前項和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項數(shù)列的前項和為,若,且.①求數(shù)列的通項公式;②求證:.18.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個極值點,,若,求的最小值.19.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.20.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)?。▓A上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.21.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.22.(10分)已知函數(shù),且.(1)若,求的最小值,并求此時的值;(2)若,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【題目詳解】當時,,,,又,所以至少小于7,此時,令,得,解得或,結(jié)合圖象,故.故選:B.【題目點撥】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.2、D【解題分析】
利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【題目詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【題目點撥】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.3、B【解題分析】
根據(jù)題意表示出各位上的數(shù)字所對應(yīng)的算籌即可得答案.【題目詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應(yīng)算籌表示為中的.故選:.【題目點撥】本題主要考查學(xué)生的合情推理與演繹推理,屬于基礎(chǔ)題.4、C【解題分析】
連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【題目詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【題目點撥】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.5、B【解題分析】
選B.考點:圓心坐標6、A【解題分析】
本題采用排除法:由排除選項D;根據(jù)特殊值排除選項C;由,且無限接近于0時,排除選項B;【題目詳解】對于選項D:由題意可得,令函數(shù),則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【題目點撥】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號的正負等有關(guān)性質(zhì)進行逐一排除是解題的關(guān)鍵;屬于中檔題.7、B【解題分析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【題目詳解】故選B【題目點撥】本題考查向量的坐標運算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標與橫坐標對應(yīng),縱坐標與縱坐標對應(yīng),切不可錯位.8、D【解題分析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【題目詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【題目點撥】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.9、B【解題分析】
滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,分別對所給函數(shù)進行驗證.【題目詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【題目點撥】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.10、C【解題分析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【題目詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【題目點撥】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.11、D【解題分析】
因為,,所以,,故選D.12、D【解題分析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【題目詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【題目點撥】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【題目詳解】由知,當時,在和上單調(diào)遞增,在和上均單調(diào)遞增,,
,
的取值范圍為:.
故答案為:.【題目點撥】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.14、【解題分析】
借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數(shù)的圖象和性質(zhì)即可解得所求.【題目詳解】,所以,.因為,所以,所以.故答案為:.【題目點撥】本題考查了三角函數(shù)的化簡,重點考查學(xué)生的計算能力,難度一般.15、3【解題分析】
由題意得,,再代入中,計算即可得答案.【題目詳解】由題意可得,,∴,解得,∴.故答案為:.【題目點撥】本題考查向量模的計算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意向量數(shù)量積公式的運用.16、156【解題分析】
先考慮每班安排的老師人數(shù),然后計算出對應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【題目詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【題目點撥】本題考查排列組合的綜合應(yīng)用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進行分析.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②詳見解析.【解題分析】
(1)依題意可表示,,相減得,由等比數(shù)列通項公式轉(zhuǎn)化為首項與公比,解得答案,并由其都是正項數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項并整理可得遞推關(guān)系,由等差數(shù)列的通項公式即可得答案;②由已知關(guān)系,表示并相減即可表示遞推關(guān)系,顯然當時,成立,當,時,表示,由分組求和與正項數(shù)列性質(zhì)放縮不等式得證.【題目詳解】解:(1)依題意可得,,兩式相減,得,所以,因為,所以,且,解得.(2)①因為,所以,兩式相減,得,即.因為,所以,即.而當時,,可得,故,所以對任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項為1,所以數(shù)列的通項公式為.②因為,所以,兩式相減,得,即,所以對任意的正整數(shù),都有.令,而當時,顯然成立,所以當,時,,所以,即,所以,得證.【題目點撥】本題考查由前n項和關(guān)系求等比數(shù)列公比,求等差數(shù)列通項公式,還考查了由分組求和表示數(shù)列和并由正項數(shù)列放縮證明不等式,屬于難題.18、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解題分析】
(1)求出f(x)的導(dǎo)數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【題目詳解】(1)將代入中,得到,求導(dǎo),得到,結(jié)合,當?shù)玫剑涸鰠^(qū)間為,當,得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導(dǎo)得到,令,得到,,,,,,,,因為,所以設(shè),令,則所以在單調(diào)遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【題目點撥】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識,是一道綜合題.19、(1)證明見解析(2)【解題分析】
(1)取中點,連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【題目詳解】(1)取中點,連結(jié),,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設(shè)平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【題目點撥】本題考查了面面垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.20、,;當時,棧道總長度最短.【解題分析】
連,,由切線長定理知:,,,,即,,則,,進而確定的取值范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年分期付款運動器材合同
- 二零二五版智能交通系統(tǒng)工程合同終止及后續(xù)維護管理協(xié)議3篇
- 2024年環(huán)保產(chǎn)業(yè)發(fā)展項目投資合同
- 二零二五年度龍門吊拆除工程安全防護及應(yīng)急預(yù)案合同3篇
- 電纜購銷合同模板
- 商業(yè)合同模板
- 年度煙塵、粉塵自動采樣器及測定儀戰(zhàn)略市場規(guī)劃報告
- 房地產(chǎn)認籌標準協(xié)議
- 2025年行政事業(yè)部門合同管理實施細則3篇
- 2025清潔外包服務(wù)合同
- 銀行信息安全保密培訓(xùn)
- 市政道路工程交通疏解施工方案
- 2024年部編版初中七年級上冊歷史:部分練習(xí)題含答案
- 拆遷評估機構(gòu)選定方案
- 床旁超聲監(jiān)測胃殘余量
- 上海市松江區(qū)市級名校2025屆數(shù)學(xué)高一上期末達標檢測試題含解析
- 綜合實踐活動教案三上
- 《新能源汽車電氣設(shè)備構(gòu)造與維修》項目三 新能源汽車照明與信號系統(tǒng)檢修
- 2024年新課標《義務(wù)教育數(shù)學(xué)課程標準》測試題(附含答案)
- 醫(yī)院培訓(xùn)課件:《靜脈中等長度導(dǎo)管臨床應(yīng)用專家共識》
- 中國國際大學(xué)生創(chuàng)新大賽與“挑戰(zhàn)杯”大學(xué)生創(chuàng)業(yè)計劃競賽(第十一章)大學(xué)生創(chuàng)新創(chuàng)業(yè)教程
評論
0/150
提交評論