![解排列組合問題的十七種常用策略_第1頁](http://file4.renrendoc.com/view/4b0fa36860445288e64cb72ffe24c74f/4b0fa36860445288e64cb72ffe24c74f1.gif)
![解排列組合問題的十七種常用策略_第2頁](http://file4.renrendoc.com/view/4b0fa36860445288e64cb72ffe24c74f/4b0fa36860445288e64cb72ffe24c74f2.gif)
![解排列組合問題的十七種常用策略_第3頁](http://file4.renrendoc.com/view/4b0fa36860445288e64cb72ffe24c74f/4b0fa36860445288e64cb72ffe24c74f3.gif)
![解排列組合問題的十七種常用策略_第4頁](http://file4.renrendoc.com/view/4b0fa36860445288e64cb72ffe24c74f/4b0fa36860445288e64cb72ffe24c74f4.gif)
![解排列組合問題的十七種常用策略_第5頁](http://file4.renrendoc.com/view/4b0fa36860445288e64cb72ffe24c74f/4b0fa36860445288e64cb72ffe24c74f5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
解排列組合問題的十七種常用策略第一頁,共三十七頁,編輯于2023年,星期五7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問有多少不同的種法?練習題第二頁,共三十七頁,編輯于2023年,星期五二.相鄰元素捆綁策略例2.7人站成一排,其中甲乙相鄰且丙丁相鄰,共有多少種不同的排法.甲乙丙丁由分步計數(shù)原理可得共有種不同的排法=480解:可先將甲乙兩元素捆綁成整體并看成一個復合元素,同時丙丁也看成一個復合元素,再與其它元素進行排列,同時對相鄰元素內部進行自排。第三頁,共三十七頁,編輯于2023年,星期五某人射擊8槍,命中4槍,4槍命中恰好有3槍連在一起的情形的不同種數(shù)為()練習題20第四頁,共三十七頁,編輯于2023年,星期五三.不相鄰問題插空策略例3.一個晚會的節(jié)目有4個舞蹈,2個相聲,3個獨唱,舞蹈節(jié)目不能連續(xù)出場,則節(jié)目的出場順序有多少種?解:分兩步進行第一步排2個相聲和3個獨唱共有
種,第二步將4舞蹈插入第一步排好的6個元素中間包含首尾兩個空位共有種
不同的方法
由分步計數(shù)原理,節(jié)目的不同順序共有
種相相獨獨獨第五頁,共三十七頁,編輯于2023年,星期五某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個新節(jié)目插入原節(jié)目單中,且兩個新節(jié)目不相鄰,那么不同插法的種數(shù)為()
30練習題第六頁,共三十七頁,編輯于2023年,星期五四.定序問題倍縮空位插入策略例4.7人排隊,其中甲乙丙3人順序一定共有多少不同的排法解:(倍縮法)對于某幾個元素順序一定的排列問題,可先把這幾個元素與其他元素一起進行排列,然后用總排列數(shù)除以這幾個元素之間的全排列數(shù),則共有不同排法種數(shù)是:(空位法)設想有7把椅子讓除甲乙丙以外的四人就坐共有
種方法,其余的三個位置甲乙丙共有
種坐法,則共有
種方法
1思考:可以先讓甲乙丙就坐嗎?第七頁,共三十七頁,編輯于2023年,星期五(插入法)先排甲乙丙三個人,共有1種排法,再把其余4四人依次插入共有
方法4*5*6*7定序問題可以用倍縮法,還可轉化為占位插空模型處理練習題10人身高各不相等,排成前后排,每排5人,要求從左至右身高逐漸增加,共有多少排法?第八頁,共三十七頁,編輯于2023年,星期五五.重排問題求冪策略例5.把6名實習生分配到7個車間實習,共有多少種不同的分法解:完成此事共分六步:把第一名實習生分配到車間有
種分法.7把第二名實習生分配到車間也有7種分法,依此類推,由分步計數(shù)原理共有種不同的排法第九頁,共三十七頁,編輯于2023年,星期五1.某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()422.某8層大樓一樓電梯上來8名乘客人,他們到各自的一層下電梯,下電梯的方法()練習題第十頁,共三十七頁,編輯于2023年,星期五六.環(huán)排問題線排策略例6.5人圍桌而坐,共有多少種坐法?
解:圍桌而坐與坐成一排的不同點在于,坐成圓形沒有首尾之分,所以固定一人A并從此位置把圓形展成直線其余4人共有____
種排法即
ABCEDDAABCE(5-1)!第十一頁,共三十七頁,編輯于2023年,星期五練習題6顆顏色不同的鉆石,可穿成幾種鉆石圈60第十二頁,共三十七頁,編輯于2023年,星期五七.多排問題直排策略例7.8人排成前后兩排,每排4人,其中甲乙在前排,丁在后排,共有多少排法解:8人排前后兩排,相當于8人坐8把椅子,可以把椅子排成一排.先在前4個位置排甲乙兩個特殊元素有____種,再排后4個位置上的特殊元素有_____種,其余的5人在5個位置上任意排列有____種,則共有_________種.前排后排一般地,元素分成多排的排列問題,可歸結為一排考慮,再分段研究.第十三頁,共三十七頁,編輯于2023年,星期五有兩排座位,前排11個座位,后排12個座位,現(xiàn)安排2人就座規(guī)定前排中間的3個座位不能坐,并且這2人不左右相鄰,那么不同排法的種數(shù)是______346練習題第十四頁,共三十七頁,編輯于2023年,星期五八.排列組合混合問題先選后排策略例8.有5個不同的小球,裝入4個不同的盒內,每盒至少裝一個球,共有多少不同的裝法.解:第一步從5個球中選出2個組成復合元共有__種方法.再把5個元素(包含一個復合元素)裝入4個不同的盒內有_____種方法.根據(jù)分步計數(shù)原理裝球的方法共有_____第十五頁,共三十七頁,編輯于2023年,星期五練習題一個班有6名戰(zhàn)士,其中正副班長各1人現(xiàn)從中選4人完成四種不同的任務,每人完成一種任務,且正副班長有且只有1人參加,則不同的選法有________種192第十六頁,共三十七頁,編輯于2023年,星期五九.小集團問題先整體局部策略例9.用1,2,3,4,5組成沒有重復數(shù)字的五位數(shù)其中恰有兩個偶數(shù)夾1,5在兩個奇數(shù)之間,這樣的五位數(shù)有多少個?解:把1,5,2,4當作一個小集團與3排隊共有____種排法,再排小集團內部共有_______種排法,由分步計數(shù)原理共有_______種排法.31524小集團第十七頁,共三十七頁,編輯于2023年,星期五1.計劃展出10幅不同的畫,其中1幅水彩畫,4幅油畫,5幅國畫,排成一行陳列,要求同一品種的必須連在一起,并且水彩畫不在兩端,那么共有陳列方式的種數(shù)為_______2.5男生和5女生站成一排照像,男生相鄰,女生也相鄰的排法有_______種第十八頁,共三十七頁,編輯于2023年,星期五十.元素相同問題隔板策略例10.有10個運動員名額,在分給7個班,每班至少一個,有多少種分配方案?
解:因為10個名額沒有差別,把它們排成一排。相鄰名額之間形成9個空隙。在9個空檔中選6個位置插個隔板,可把名額分成7份,對應地分給7個班級,每一種插板方法對應一種分法共有___________種分法。一班二班三班四班五班六班七班將n個相同的元素分成m份(n,m為正整數(shù)),每份至少一個元素,可以用m-1塊隔板,插入n個元素排成一排的n-1個空隙中,所有分法數(shù)為第十九頁,共三十七頁,編輯于2023年,星期五練習題10個相同的球裝5個盒中,每盒至少一
有多少裝法?2.x+y+z+w=100求這個方程組的自然數(shù)解的組數(shù)第二十頁,共三十七頁,編輯于2023年,星期五十一.正難則反總體淘汰策略例11.從0,1,2,3,4,5,6,7,8,9這十個數(shù)字中取出三個數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?解:這問題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個數(shù)字中有5個偶數(shù)5個奇數(shù),所取的三個數(shù)含有3個偶數(shù)的取法有____,只含有1個偶數(shù)的取法有_____,和為偶數(shù)的取法共有_________再淘汰和小于10的偶數(shù)共___________符合條件的取法共有___________9013015017023025027041045043+-9+第二十一頁,共三十七頁,編輯于2023年,星期五我們班里有43位同學,從中任抽5人,正、副班長、團支部書記至少有一人在內的抽法有多少種?練習題第二十二頁,共三十七頁,編輯于2023年,星期五十二.平均分組問題除法策略例12.6本不同的書平均分成3堆,每堆2本共有多少分法?解:分三步取書得種方法,但這里出現(xiàn)重復計數(shù)的現(xiàn)象,不妨記6本書為ABCDEF若第一步取AB,第二步取CD,第三步取EF該分法記為(AB,CD,EF),則中還有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有種取法,而這些分法僅是(AB,CD,EF)一種分法,故共有種分法。平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要一定要除以(n為均分的組數(shù))避免重復計數(shù)。第二十三頁,共三十七頁,編輯于2023年,星期五1將13個球隊分成3組,一組5個隊,其它兩組4個隊,有多少分法?2.10名學生分成3組,其中一組4人,另兩組3人但正副班長不能分在同一組,有多少種不同的分組方法(1540)3.某校高二年級共有六個班級,現(xiàn)從外地轉入4名學生,要安排到該年級的兩個班級且每班安排2名,則不同的安排方案種數(shù)為______
第二十四頁,共三十七頁,編輯于2023年,星期五十三.合理分類與分步策略例13.在一次演唱會上共10名演員,其中8人能能唱歌,5人會跳舞,現(xiàn)要演出一個2人唱歌2人伴舞的節(jié)目,有多少選派方法?解:10演員中有5人只會唱歌,2人只會跳舞3人為全能演員。以只會唱歌的5人是否選上唱歌人員為標準進行研究只會唱的5人中沒有人選上唱歌人員共有____種,只會唱的5人中只有1人選上唱歌人員________種,只會唱的5人中只有2人選上唱歌人員有____種,由分類計數(shù)原理共有______________________種。++第二十五頁,共三十七頁,編輯于2023年,星期五本題還有如下分類標準:*以3個全能演員是否選上唱歌人員為標準*以3個全能演員是否選上跳舞人員為標準*以只會跳舞的2人是否選上跳舞人員為標準都可經(jīng)得到正確結果解含有約束條件的排列組合問題,可按元素的性質進行分類,按事件發(fā)生的連續(xù)過程分步,做到標準明確。分步層次清楚,不重不漏,分類標準一旦確定要貫穿于解題過程的始終。第二十六頁,共三十七頁,編輯于2023年,星期五1.從4名男生和3名女生中選出4人參加某個座談會,若這4人中必須既有男生又有女生,則不同的選法共有_______34
練習題2.3成人2小孩乘船游玩,1號船最多乘3人,2號船最多乘2人,3號船只能乘1人,他們任選2只船或3只船,但小孩不能單獨乘一只船,這3人共有多少乘船方法.27第二十七頁,共三十七頁,編輯于2023年,星期五十四.構造模型策略例14.馬路上有編號為1,2,3,4,5,6,7,8,9的九只路燈,現(xiàn)要關掉其中的3盞,但不能關掉相鄰的2盞或3盞,也不能關掉兩端的2盞,求滿足條件的關燈方法有多少種?解:把此問題當作一個排隊模型在6盞亮燈的5個空隙中插入3個不亮的燈有________種第二十八頁,共三十七頁,編輯于2023年,星期五練習題某排共有10個座位,若4人就坐,每人左右兩邊都有空位,那么不同的坐法有多少種?120第二十九頁,共三十七頁,編輯于2023年,星期五十五.實際操作窮舉策略例15.設有編號1,2,3,4,5的五個球和編號1,23,4,5的五個盒子,現(xiàn)將5個球投入這五個盒子內,要求每個盒子放一個球,并且恰好有兩個球的編號與盒子的編號相同,.有多少投法
解:從5個球中取出2個與盒子對號有_____種還剩下3球3盒序號不能對應,利用實際操作法,如果剩下3,4,5號球,3,4,5號盒3號球裝4號盒時,則4,5號球有只有1種裝法3號盒4號盒5號盒345第三十頁,共三十七頁,編輯于2023年,星期五十五.實際操作窮舉策略例15.設有編號1,2,3,4,5的五個球和編號1,23,4,5的五個盒子,現(xiàn)將5個球投入這五個盒子內,要求每個盒子放一個球,并且恰好有兩個球的編號與盒子的編號相同,.有多少投法
解:從5個球中取出2個與盒子對號有_____種還剩下3球3盒序號不能對應,利用實際操作法,如果剩下3,4,5號球,3,4,5號盒3號球裝4號盒時,則4,5號球有只有1種裝法,同理3號球裝5號盒時,4,5號球有也只有1種裝法,由分步計數(shù)原理有2種第三十一頁,共三十七頁,編輯于2023年,星期五練習題同一寢室4人,每人寫一張賀年卡集中起來,然后每人各拿一張別人的賀年卡,則四張賀年卡不同的分配方式有多少種?(9)2.給圖中區(qū)域涂色,要求相鄰區(qū)域不同色,現(xiàn)有4種可選顏色,則不同的著色方法有____種2134572第三十二頁,共三十七頁,編輯于2023年,星期五十六.分解與合成策略例16.30030能被多少個不同的偶數(shù)整除分析:先把30030分解成質因數(shù)的乘積形式30030=2×3×5×7×11×
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度書畫藝術品市場代理銷售合同
- 2025年度建筑安全風險評估與監(jiān)測委托合同
- 2025年度國際知識產(chǎn)權轉讓合同樣本
- 2024-2025學年福建省福州第十中學高一上學期期中考試歷史試卷
- 2025年公共租賃場地安全協(xié)議
- 2025年合作協(xié)議訂立與實施年
- 2025年醫(yī)院護師職責合同
- 2025年農(nóng)場土地租賃合同年協(xié)議書
- 2025年TBBS項目申請報告模稿
- 2025年焦化二甲苯項目規(guī)劃申請報告模范
- 酒店長包房租賃協(xié)議書范本
- 2 找春天 公開課一等獎創(chuàng)新教學設計
- 2025年江蘇護理職業(yè)學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年江蘇南京水務集團有限公司招聘筆試參考題庫含答案解析
- 【道法】開學第一課 課件-2024-2025學年統(tǒng)編版道德與法治七年級下冊
- 口腔門診分診流程
- 建筑工程施工安全管理課件
- 2025年春新外研版(三起)英語三年級下冊課件 Unit2第1課時Startup
- 2025年上半年畢節(jié)市威寧自治縣事業(yè)單位招考考試(443名)易考易錯模擬試題(共500題)試卷后附參考答案
- 處方點評知識培訓
- 2025年新合同管理工作計劃
評論
0/150
提交評論