近五年高考數(shù)學(xué)真題分類匯編14篇之12 解析幾何解析版_第1頁
近五年高考數(shù)學(xué)真題分類匯編14篇之12 解析幾何解析版_第2頁
近五年高考數(shù)學(xué)真題分類匯編14篇之12 解析幾何解析版_第3頁
近五年高考數(shù)學(xué)真題分類匯編14篇之12 解析幾何解析版_第4頁
近五年高考數(shù)學(xué)真題分類匯編14篇之12 解析幾何解析版_第5頁
已閱讀5頁,還剩85頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

近五年高考數(shù)學(xué)真題分類匯編十二、解析幾何(答案解析)1.A【分析】首先確定漸近線方程,然后利用點(diǎn)到直線距離公式求得點(diǎn)到一條漸近線的距離即可.【解析】由題意可知,雙曲線的漸近線方程為:,即,結(jié)合對稱性,不妨考慮點(diǎn)到直線的距離:.故選:A.2.A【分析】設(shè)點(diǎn),由依題意可知,,,再根據(jù)兩點(diǎn)間的距離公式得到,然后消元,即可利用二次函數(shù)的性質(zhì)求出最大值.【解析】設(shè)點(diǎn),因?yàn)椋?,所以,而,所以?dāng)時(shí),的最大值為.故選:A.【小結(jié)】本題解題關(guān)鍵是熟悉橢圓的簡單幾何性質(zhì),由兩點(diǎn)間的距離公式,并利用消元思想以及二次函數(shù)的性質(zhì)即可解出.3.C【分析】本題通過利用橢圓定義得到,借助基本不等式即可得到答案.【解析】由題,,則,所以(當(dāng)且僅當(dāng)時(shí),等號成立).故選:C.【小結(jié)】橢圓上的點(diǎn)與橢圓的兩焦點(diǎn)的距離問題,常常從橢圓的定義入手,注意基本不等式得靈活運(yùn)用,或者記住定理:兩正數(shù),和一定相等時(shí)及最大,積一定,相等時(shí)和最小,也可快速求解.4.C【分析】首先利用等比數(shù)列得到等式,然后對所得的等式進(jìn)行恒等變形即可確定其軌跡方程.【解析】由題意得,即,對其進(jìn)行整理變形:,,,,所以或,其中為雙曲線,為直線.故選:C.【小結(jié)】關(guān)鍵點(diǎn)小結(jié):本題考查軌跡方程,關(guān)鍵之處在于由題意對所得的等式進(jìn)行恒等變形,提現(xiàn)了核心素養(yǎng)中的邏輯推理素養(yǎng)和數(shù)學(xué)運(yùn)算素養(yǎng),屬于中等題.5.A【分析】根據(jù)雙曲線的定義及條件,表示出,結(jié)合余弦定理可得答案.【解析】因?yàn)椋呻p曲線的定義可得,所以,;因?yàn)?由余弦定理可得,整理可得,所以,即.故選:A【小結(jié)】關(guān)鍵小結(jié):雙曲線的定義是入手點(diǎn),利用余弦定理建立間的等量關(guān)系是求解的關(guān)鍵.6.C【分析】設(shè),由,根據(jù)兩點(diǎn)間的距離公式表示出,分類討論求出的最大值,再構(gòu)建齊次不等式,解出即可.【解析】設(shè),由,因?yàn)?,,所以,因?yàn)椋?dāng),即時(shí),,即,符合題意,由可得,即;當(dāng),即時(shí),,即,化簡得,,顯然該不等式不成立.故選:C.【小結(jié)】本題解題關(guān)鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調(diào)性從而確定最值.7.D【分析】由拋物線的焦點(diǎn)可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程.【解析】由題可知,拋物線的焦點(diǎn)為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因?yàn)椋獾茫蔬x:.【小結(jié)】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題.8.B【分析】依據(jù)題意不妨作出焦點(diǎn)在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點(diǎn),即求解.【解析】如圖所示:.因?yàn)榫€段的垂直平分線上的點(diǎn)到的距離相等,又點(diǎn)在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點(diǎn).故選:B.【小結(jié)】本題主要考查拋物線的定義的應(yīng)用,屬于基礎(chǔ)題.9.A【分析】求出圓心的軌跡方程后,根據(jù)圓心到原點(diǎn)的距離減去半徑1可得答案.【解析】設(shè)圓心,則,化簡得,所以圓心的軌跡是以為圓心,1為半徑的圓,所以,所以,當(dāng)且僅當(dāng)在線段上時(shí)取得等號,故選:A.【小結(jié)】本題考查了圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.10.D【分析】根據(jù)題意可知,點(diǎn)既在雙曲線的一支上,又在函數(shù)的圖象上,即可求出點(diǎn)的坐標(biāo),得到的值.【解析】因?yàn)?,所以點(diǎn)在以為焦點(diǎn),實(shí)軸長為,焦距為的雙曲線的右支上,由可得,,即雙曲線的右支方程為,而點(diǎn)還在函數(shù)的圖象上,所以,由,解得,即.故選:D.【小結(jié)】本題主要考查雙曲線的定義的應(yīng)用,以及二次曲線的位置關(guān)系的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.11.B【分析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計(jì)算即可.【解析】由已知,不妨設(shè),則,因?yàn)椋渣c(diǎn)在以為直徑的圓上,即是以P為直角頂點(diǎn)的直角三角形,故,即,又,所以,解得,所以故選:B【點(diǎn)晴】本題考查雙曲線中焦點(diǎn)三角形面積的計(jì)算問題,涉及到雙曲線的定義,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.12.D【分析】根據(jù)導(dǎo)數(shù)的幾何意義設(shè)出直線的方程,再由直線與圓相切的性質(zhì),即可得出答案.【解析】設(shè)直線在曲線上的切點(diǎn)為,則,函數(shù)的導(dǎo)數(shù)為,則直線的斜率,設(shè)直線的方程為,即,由于直線與圓相切,則,兩邊平方并整理得,解得,(舍),則直線的方程為,即.故選:D.【小結(jié)】本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用以及直線與圓的位置的應(yīng)用,屬于中檔題.13.A【分析】根據(jù)雙曲線的定義,三角形面積公式,勾股定理,結(jié)合離心率公式,即可得出答案.【解析】,,根據(jù)雙曲線的定義可得,,即,,,,即,解得,故選:A.【小結(jié)】本題主要考查了雙曲線的性質(zhì)以及定義的應(yīng)用,涉及了勾股定理,三角形面積公式的應(yīng)用,屬于中檔題.14.B【分析】首先根據(jù)直線方程判斷出直線過定點(diǎn),設(shè),當(dāng)直線與垂直時(shí),點(diǎn)到直線距離最大,即可求得結(jié)果.【解析】由可知直線過定點(diǎn),設(shè),當(dāng)直線與垂直時(shí),點(diǎn)到直線距離最大,即為.故選:B.【小結(jié)】該題考查的是有關(guān)解析幾何初步的問題,涉及到的知識點(diǎn)有直線過定點(diǎn)問題,利用幾何性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.15.B【分析】根據(jù)題中所給的條件,結(jié)合拋物線的對稱性,可知,從而可以確定出點(diǎn)的坐標(biāo),代入方程求得的值,進(jìn)而求得其焦點(diǎn)坐標(biāo),得到結(jié)果.【解析】因?yàn)橹本€與拋物線交于兩點(diǎn),且,根據(jù)拋物線的對稱性可以確定,所以,代入拋物線方程,求得,所以其焦點(diǎn)坐標(biāo)為,故選:B.【小結(jié)】該題考查的是有關(guān)圓錐曲線的問題,涉及到的知識點(diǎn)有直線與拋物線的交點(diǎn),拋物線的對稱性,點(diǎn)在拋物線上的條件,拋物線的焦點(diǎn)坐標(biāo),屬于簡單題目.16.A【分析】首先建立平面直角坐標(biāo)系,然后結(jié)合數(shù)量積的定義求解其軌跡方程即可.【解析】設(shè),以AB中點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則:,設(shè),可得:,從而:,結(jié)合題意可得:,整理可得:,即點(diǎn)C的軌跡是以AB中點(diǎn)為圓心,為半徑的圓.故選:A.【小結(jié)】本題主要考查平面向量及其數(shù)量積的坐標(biāo)運(yùn)算,軌跡方程的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.17.B【分析】當(dāng)直線和圓心與點(diǎn)的連線垂直時(shí),所求的弦長最短,即可得出結(jié)論.【解析】圓化為,所以圓心坐標(biāo)為,半徑為,設(shè),當(dāng)過點(diǎn)的直線和直線垂直時(shí),圓心到過點(diǎn)的直線的距離最大,所求的弦長最短,此時(shí)根據(jù)弦長公式得最小值為.故選:B.【小結(jié)】本題考查圓的簡單幾何性質(zhì),以及幾何法求弦長,屬于基礎(chǔ)題.18.D【分析】由題意可判斷直線與圓相離,根據(jù)圓的知識可知,四點(diǎn)共圓,且,根據(jù)可知,當(dāng)直線時(shí),最小,求出以為直徑的圓的方程,根據(jù)圓系的知識即可求出直線的方程.【解析】圓的方程可化為,點(diǎn)到直線的距離為,所以直線與圓相離.依圓的知識可知,四點(diǎn)四點(diǎn)共圓,且,所以,而,當(dāng)直線時(shí),,,此時(shí)最?。嗉?,由解得,.所以以為直徑的圓的方程為,即,兩圓的方程相減可得:,即為直線的方程.故選:D.【小結(jié)】本題主要考查直線與圓,圓與圓的位置關(guān)系的應(yīng)用,以及圓的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于中檔題.19.C【分析】利用拋物線的定義建立方程即可得到答案.【解析】設(shè)拋物線的焦點(diǎn)為F,由拋物線的定義知,即,解得.故選:C.【點(diǎn)晴】本題主要考查利用拋物線的定義計(jì)算焦半徑,考查學(xué)生轉(zhuǎn)化與化歸思想,是一道容易題.20.B【分析】由題意可知圓心在第一象限,設(shè)圓心的坐標(biāo)為,可得圓的半徑為,寫出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)在圓上,求得實(shí)數(shù)的值,利用點(diǎn)到直線的距離公式可求出圓心到直線的距離.【解析】由于圓上的點(diǎn)在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標(biāo)為,則圓的半徑為,圓的標(biāo)準(zhǔn)方程為.由題意可得,可得,解得或,所以圓心的坐標(biāo)為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【小結(jié)】本題考查圓心到直線距離的計(jì)算,求出圓的方程是解題的關(guān)鍵,考查計(jì)算能力,屬于中等題.21.B【分析】因?yàn)?,可得雙曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點(diǎn)坐標(biāo),即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【解析】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點(diǎn)不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當(dāng)且僅當(dāng)取等號的焦距的最小值:故選:B.【小結(jié)】本題主要考查了求雙曲線焦距的最值問題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時(shí),要檢驗(yàn)等號是否成立,考查了分析能力和計(jì)算能力,屬于中檔題.22.D【分析】本題根據(jù)根據(jù)雙曲線的離心率的定義,列關(guān)于a的方程求解.【解析】∵雙曲線的離心率,,∴,解得,故選D.【小結(jié)】本題主要考查雙曲線的離心率的定義,雙曲線中a,b,c的關(guān)系,方程的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.23.B【分析】設(shè),因?yàn)樵俳Y(jié)合雙曲線方程可解出,再利用三角形面積公式可求出結(jié)果.【解析】設(shè)點(diǎn),則①.又,②.由①②得,即,,故選B.【小結(jié)】本題易錯(cuò)在忽視圓錐曲線方程和兩點(diǎn)間的距離公式的聯(lián)系導(dǎo)致求解不暢.24.D【分析】首先將參數(shù)方程化為直角坐標(biāo)方程,然后利用點(diǎn)到直線距離公式求解距離即可.【解析】直線的普通方程為,即,點(diǎn)到直線的距離,故選D.【小結(jié)】本題考查直線參數(shù)方程與普通方程的轉(zhuǎn)化,點(diǎn)到直線的距離,屬于容易題,注重基礎(chǔ)知識?基本運(yùn)算能力的考查.25.A【分析】本題考查以雙曲線為載體的三角形面積的求法,滲透了直觀想象、邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng).采取公式法,利用數(shù)形結(jié)合、轉(zhuǎn)化與化歸和方程思想解題.【解析】由.,又P在C的一條漸近線上,不妨設(shè)為在上,,故選A.【小結(jié)】忽視圓錐曲線方程和兩點(diǎn)間的距離公式的聯(lián)系導(dǎo)致求解不暢,采取列方程組的方式解出三角形的高,便可求三角形面積.26.D【分析】只需把用表示出來,即可根據(jù)雙曲線離心率的定義求得離心率.【解析】拋物線的準(zhǔn)線的方程為,雙曲線的漸近線方程為,則有∴,,,∴.故選D.【小結(jié)】本題考查拋物線和雙曲線的性質(zhì)以及離心率的求解,解題關(guān)鍵是求出AB的長度.27.A【分析】準(zhǔn)確畫圖,由圖形對稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【解析】設(shè)與軸交于點(diǎn),由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【小結(jié)】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時(shí)事半功倍,信手拈來.28.B【分析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【解析】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得.所求橢圓方程為,故選B.法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補(bǔ),,兩式消去,得,解得.所求橢圓方程為,故選B.【小結(jié)】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實(shí)了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng).29.D【分析】由雙曲線漸近線定義可得,再利用求雙曲線的離心率.【解析】由已知可得,,故選D.【小結(jié)】對于雙曲線:,有;對于橢圓,有,防止記混.30.A【分析】根據(jù)圓心和圓上點(diǎn)建立關(guān)于半徑的方程,得到和;根據(jù)整理出,從而得到點(diǎn)的軌跡.【解析】因?yàn)橥恚河忠驗(yàn)椋詣t,即設(shè),則為直線本題正確選項(xiàng):【小結(jié)】本題考查動(dòng)點(diǎn)的軌跡方程的求解問題,關(guān)鍵在于能夠?qū)⑺髣?dòng)點(diǎn)的橫縱坐標(biāo)建立起等量關(guān)系,從而轉(zhuǎn)化為軌跡方程.31.C【分析】為單位圓上一點(diǎn),而直線過點(diǎn),則根據(jù)幾何意義得的最大值為.【解析】為單位圓上一點(diǎn),而直線過點(diǎn),所以的最大值為,選C.【小結(jié)】與圓有關(guān)的最值問題主要表現(xiàn)在求幾何圖形的長度、面積的最值,求點(diǎn)到直線的距離的最值,求相關(guān)參數(shù)的最值等方面.解決此類問題的主要思路是利用圓的幾何性質(zhì)將問題轉(zhuǎn)化.32.B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得.解析:由題可知在中,在中,故選B.小結(jié):本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題.33.A【解析】分析:先求出A,B兩點(diǎn)坐標(biāo)得到再計(jì)算圓心到直線距離,得到點(diǎn)P到直線距離范圍,由面積公式計(jì)算即可解析:直線分別與軸,軸交于,兩點(diǎn),則點(diǎn)P在圓上圓心為(2,0),則圓心到直線距離故點(diǎn)P到直線的距離的范圍為則故答案選A.小結(jié):本題主要考查直線與圓,考查了點(diǎn)到直線的距離公式,三角形的面積公式,屬于中檔題.34.D【解析】分析:設(shè),則根據(jù)平面幾何知識可求,再結(jié)合橢圓定義可求離心率.解析:在中,設(shè),則,又由橢圓定義可知?jiǎng)t離心率,故選D.小結(jié):橢圓定義的應(yīng)用主要有兩個(gè)方面:一是判斷平面內(nèi)動(dòng)點(diǎn)與兩定點(diǎn)的軌跡是否為橢圓,二是利用定義求焦點(diǎn)三角形的周長、面積、橢圓的弦長及最值和離心率問題等;“焦點(diǎn)三角形”是橢圓問題中的??贾R點(diǎn),在解決這類問題時(shí)經(jīng)常會(huì)用到正弦定理,余弦定理以及橢圓的定義.35.D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.解析:因?yàn)闉榈妊切?,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.小結(jié):解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.36.B【分析】根據(jù)已知可得,雙曲線焦距,結(jié)合的關(guān)系,即可求出結(jié)論.【解析】因?yàn)殡p曲線的一條漸近線方程為,則.①又因?yàn)闄E圓與雙曲線有公共焦點(diǎn),雙曲線的焦距,即c=3,則a2+b2=c2=9.②由①②解得a=2,b=,則雙曲線C的方程為.故選:B.【小結(jié)】本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程以及雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.37.C【分析】聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計(jì)算距離得到答案.【解析】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點(diǎn)M到直線NF的距離為故選:C.【小結(jié)】本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.38.BD【分析】對于A,由于等價(jià)向量關(guān)系,聯(lián)系到一個(gè)三角形內(nèi),進(jìn)而確定點(diǎn)的坐標(biāo);對于B,將點(diǎn)的運(yùn)動(dòng)軌跡考慮到一個(gè)三角形內(nèi),確定路線,進(jìn)而考慮體積是否為定值;對于C,考慮借助向量的平移將點(diǎn)軌跡確定,進(jìn)而考慮建立合適的直角坐標(biāo)系來求解點(diǎn)的個(gè)數(shù);對于D,考慮借助向量的平移將點(diǎn)軌跡確定,進(jìn)而考慮建立合適的直角坐標(biāo)系來求解點(diǎn)的個(gè)數(shù).【解析】易知,點(diǎn)在矩形內(nèi)部(含邊界).對于A,當(dāng)時(shí),,即此時(shí)線段,周長不是定值,故A錯(cuò)誤;對于B,當(dāng)時(shí),,故此時(shí)點(diǎn)軌跡為線段,而,平面,則有到平面的距離為定值,所以其體積為定值,故B正確.對于C,當(dāng)時(shí),,取,中點(diǎn)分別為,,則,所以點(diǎn)軌跡為線段,不妨建系解決,建立空間直角坐標(biāo)系如圖,,,,則,,,所以或.故均滿足,故C錯(cuò)誤;對于D,當(dāng)時(shí),,取,中點(diǎn)為.,所以點(diǎn)軌跡為線段.設(shè),因?yàn)?,所以,,所以,此時(shí)與重合,故D正確.故選:BD.【小結(jié)】本題主要考查向量的等價(jià)替換,關(guān)鍵之處在于所求點(diǎn)的坐標(biāo)放在三角形內(nèi).39.ACD【分析】計(jì)算出圓心到直線的距離,可得出點(diǎn)到直線的距離的取值范圍,可判斷AB選項(xiàng)的正誤;分析可知,當(dāng)最大或最小時(shí),與圓相切,利用勾股定理可判斷CD選項(xiàng)的正誤.【解析】圓的圓心為,半徑為,直線的方程為,即,圓心到直線的距離為,所以,點(diǎn)到直線的距離的最小值為,最大值為,A選項(xiàng)正確,B選項(xiàng)錯(cuò)誤;如下圖所示:當(dāng)最大或最小時(shí),與圓相切,連接、,可知,,,由勾股定理可得,CD選項(xiàng)正確.故選:ACD.【小結(jié)】結(jié)論小結(jié):若直線與半徑為的圓相離,圓心到直線的距離為,則圓上一點(diǎn)到直線的距離的取值范圍是.40.ACD【分析】結(jié)合選項(xiàng)進(jìn)行逐項(xiàng)分析求解,時(shí)表示橢圓,時(shí)表示圓,時(shí)表示雙曲線,時(shí)表示兩條直線.【解析】對于A,若,則可化為,因?yàn)?,所以,即曲線表示焦點(diǎn)在軸上的橢圓,故A正確;對于B,若,則可化為,此時(shí)曲線表示圓心在原點(diǎn),半徑為的圓,故B不正確;對于C,若,則可化為,此時(shí)曲線表示雙曲線,由可得,故C正確;對于D,若,則可化為,,此時(shí)曲線表示平行于軸的兩條直線,故D正確;故選:ACD.【小結(jié)】本題主要考查曲線方程的特征,熟知常見曲線方程之間的區(qū)別是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).41.【分析】先用坐標(biāo)表示,再根據(jù)向量垂直坐標(biāo)表示列方程,解得,即得結(jié)果.【解析】拋物線:()的焦點(diǎn),∵P為上一點(diǎn),與軸垂直,所以P的橫坐標(biāo)為,代入拋物線方程求得P的縱坐標(biāo)為,不妨設(shè),因?yàn)镼為軸上一點(diǎn),且,所以Q在F的右側(cè),又,因?yàn)?,所?,所以的準(zhǔn)線方程為故答案為:.【小結(jié)】利用向量數(shù)量積處理垂直關(guān)系是本題關(guān)鍵.42.【分析】根據(jù)已知可得,設(shè),利用勾股定理結(jié)合,求出,四邊形面積等于,即可求解.【解析】因?yàn)闉樯详P(guān)于坐標(biāo)原點(diǎn)對稱的兩點(diǎn),且,所以四邊形為矩形,設(shè),則,所以,,即四邊形面積等于.故答案為:.43.4【分析】將漸近線方程化成斜截式,得出的關(guān)系,再結(jié)合雙曲線中對應(yīng)關(guān)系,聯(lián)立求解,再由關(guān)系式求得,即可求解【解析】由漸近線方程化簡得,即,同時(shí)平方得,又雙曲線中,故,解得(舍去),,故焦距故答案為:4【小結(jié)】本題為基礎(chǔ)題,考查由漸近線求解雙曲線中參數(shù),焦距,正確計(jì)算并聯(lián)立關(guān)系式求解是關(guān)鍵44.【分析】先求出右焦點(diǎn)坐標(biāo),再利用點(diǎn)到直線的距離公式求解.【解析】由已知,,所以雙曲線的右焦點(diǎn)為,所以右焦點(diǎn)到直線的距離為.故答案為:45.5【分析】根據(jù)圓的方程得到圓心坐標(biāo)和半徑,由點(diǎn)到直線的距離公式可求出圓心到直線的距離,進(jìn)而利用弦長公式,即可求得.【解析】因?yàn)閳A心到直線的距離,由可得,解得.故答案為:.【小結(jié)】本題主要考查圓的弦長問題,涉及圓的標(biāo)準(zhǔn)方程和點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.46.【分析】根據(jù)漸近線方程求得,由此求得,進(jìn)而求得雙曲線的離心率.【解析】雙曲線,故.由于雙曲線的一條漸近線方程為,即,所以,所以雙曲線的離心率為.故答案為:【小結(jié)】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的求法,屬于基礎(chǔ)題.47.2【分析】根據(jù)雙曲線的幾何性質(zhì)可知,,,即可根據(jù)斜率列出等式求解即可.【解析】聯(lián)立,解得,所以.依題可得,,,即,變形得,,因此,雙曲線的離心率為.故答案為:.【小結(jié)】本題主要考查雙曲線的離心率的求法,以及雙曲線的幾何性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.48.4.【分析】將原問題轉(zhuǎn)化為切點(diǎn)與直線之間的距離,然后利用導(dǎo)函數(shù)確定切點(diǎn)坐標(biāo)可得最小距離【解析】當(dāng)直線平移到與曲線相切位置時(shí),切點(diǎn)Q即為點(diǎn)P到直線的距離最小.由,得,,即切點(diǎn),則切點(diǎn)Q到直線的距離為,故答案為.【小結(jié)】本題考查曲線上任意一點(diǎn)到已知直線的最小距離,滲透了直觀想象和數(shù)學(xué)運(yùn)算素養(yǎng).采取導(dǎo)數(shù)法和公式法,利用數(shù)形結(jié)合和轉(zhuǎn)化與化歸思想解題.49.(x-1)2+y2=4.【分析】由拋物線方程可得焦點(diǎn)坐標(biāo),即圓心,焦點(diǎn)到準(zhǔn)線距離即半徑,進(jìn)而求得結(jié)果.【解析】拋物線y2=4x中,2p=4,p=2,焦點(diǎn)F(1,0),準(zhǔn)線l的方程為x=-1,以F為圓心,且與l相切的圓的方程為(x-1)2+y2=22,即為(x-1)2+y2=4.【小結(jié)】本題主要考查拋物線的焦點(diǎn)坐標(biāo),拋物線的準(zhǔn)線方程,直線與圓相切的充分必要條件等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.50.【分析】根據(jù)橢圓的定義分別求出,設(shè)出的坐標(biāo),結(jié)合三角形面積可求出的坐標(biāo).【解析】由已知可得,.∴.設(shè)點(diǎn)的坐標(biāo)為,則,又,解得,,解得(舍去),的坐標(biāo)為.【小結(jié)】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實(shí)了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng).51.【分析】結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標(biāo)表示成圓的方程,與橢圓方程聯(lián)立可進(jìn)一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【解析】方法1:由題意可知,由中位線定理可得,設(shè)可得,聯(lián)立方程可解得(舍),點(diǎn)在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應(yīng)用解析1:由題意可知,由中位線定理可得,即求得,所以.【小結(jié)】本題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的幾何性質(zhì)、直線與圓的位置關(guān)系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.52.2.【分析】通過向量關(guān)系得到和,得到,結(jié)合雙曲線的漸近線可得從而由可求離心率.【解析】如圖,由得又得OA是三角形的中位線,即由,得則有,又OA與OB都是漸近線,得又,得.又漸近線OB的斜率為,所以該雙曲線的離心率為.【小結(jié)】本題考查平面向量結(jié)合雙曲線的漸進(jìn)線和離心率,滲透了邏輯推理、直觀想象和數(shù)學(xué)運(yùn)算素養(yǎng).采取幾何法,利用數(shù)形結(jié)合思想解題.53.【分析】設(shè)A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圓的方程和向量數(shù)量積的定義、坐標(biāo)表示,可得三角形OAB為等邊三角形,AB=1,+的幾何意義為點(diǎn)A,B兩點(diǎn)到直線x+y﹣1=0的距離d1與d2之和,由兩平行線的距離可得所求最大值.【解析】設(shè)A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B兩點(diǎn)在圓x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB為等邊三角形,AB=1,+的幾何意義為點(diǎn)A,B兩點(diǎn)到直線x+y﹣1=0的距離d1與d2之和,顯然A,B在第三象限,AB所在直線與直線x+y=1平行,可設(shè)AB:x+y+t=0,(t>0),由圓心O到直線AB的距離d=,可得2=1,解得t=,即有兩平行線的距離為=,即+的最大值為+,故答案為+.【小結(jié)】本題考查向量數(shù)量積的坐標(biāo)表示和定義,以及圓的方程和運(yùn)用,考查點(diǎn)與圓的位置關(guān)系,運(yùn)用點(diǎn)到直線的距離公式是解題的關(guān)鍵,屬于難題.54.3【解析】分析:先根據(jù)條件確定圓方程,再利用方程組解出交點(diǎn)坐標(biāo),最后根據(jù)平面向量的數(shù)量積求結(jié)果.解析:設(shè),則由圓心為中點(diǎn)得易得,與聯(lián)立解得點(diǎn)的橫坐標(biāo)所以.所以,由得或,因?yàn)?,所以小結(jié):以向量為載體求相關(guān)變量的取值或范圍,是向量與函數(shù)、不等式、三角函數(shù)、曲線方程等相結(jié)合的一類綜合問題.通過向量的坐標(biāo)運(yùn)算,將問題轉(zhuǎn)化為解方程或解不等式或求函數(shù)值域,是解決這類問題的一般方法.55.2【解析】分析:先確定雙曲線的焦點(diǎn)到漸近線的距離,再根據(jù)條件求離心率.解析:因?yàn)殡p曲線的焦點(diǎn)到漸近線即的距離為所以,因此小結(jié):雙曲線的焦點(diǎn)到漸近線的距離為b,焦點(diǎn)在漸近線上的射影到坐標(biāo)原點(diǎn)的距離為a.56.【解析】分析:根據(jù)題干描述畫出相應(yīng)圖形,分析可得拋物線經(jīng)過點(diǎn),將點(diǎn)坐標(biāo)代入可求參數(shù)的值,進(jìn)而可求焦點(diǎn)坐標(biāo).詳細(xì):由題意可得,點(diǎn)在拋物線上,將代入中,解得:,,由拋物線方程可得:,焦點(diǎn)坐標(biāo)為.小結(jié):此題考查拋物線的相關(guān)知識,屬于易得分題,關(guān)鍵在于能夠結(jié)合拋物線的對稱性質(zhì),得到拋物線上點(diǎn)的坐標(biāo),再者熟練準(zhǔn)確記憶拋物線的焦點(diǎn)坐標(biāo)公式也是保證本題能夠得分的關(guān)鍵.57.2【分析】利用點(diǎn)差法得到AB的斜率,結(jié)合拋物線定義可得結(jié)果.【解析】解析:設(shè)則所以所以取AB中點(diǎn),分別過點(diǎn)A,B作準(zhǔn)線的垂線,垂足分別為因?yàn)?,因?yàn)镸’為AB中點(diǎn),所以MM’平行于x軸因?yàn)镸(-1,1)所以,則即故答案為2.【小結(jié)】本題主要考查直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),設(shè),利用點(diǎn)差法得到,取AB中點(diǎn),分別過點(diǎn)A,B作準(zhǔn)線的垂線,垂足分別為,由拋物線的性質(zhì)得到,進(jìn)而得到斜率.58.5【解析】分析:先根據(jù)條件得到A,B坐標(biāo)間的關(guān)系,代入橢圓方程解得B的縱坐標(biāo),即得B的橫坐標(biāo)關(guān)于m的函數(shù)關(guān)系,最后根據(jù)二次函數(shù)性質(zhì)確定最值取法.解析:設(shè),由得因?yàn)锳,B在橢圓上,所以,與對應(yīng)相減得,當(dāng)且僅當(dāng)時(shí)取最大值.小結(jié):解析幾何中的最值是高考的熱點(diǎn),在圓錐曲線的綜合問題中經(jīng)常出現(xiàn),求解此類問題的一般思路為在深刻認(rèn)識運(yùn)動(dòng)變化的過程之中,抓住函數(shù)關(guān)系,將目標(biāo)量表示為一個(gè)(或者多個(gè))變量的函數(shù),然后借助于函數(shù)最值的探求來使問題得以解決.59.(1);(2)最大值為.【分析】(1)由拋物線焦點(diǎn)與準(zhǔn)線的距離即可得解;(2)設(shè),由平面向量的知識可得,進(jìn)而可得,再由斜率公式及基本不等式即可得解.【解析】(1)拋物線的焦點(diǎn),準(zhǔn)線方程為,由題意,該拋物線焦點(diǎn)到準(zhǔn)線的距離為,所以該拋物線的方程為;(2)設(shè),則,所以,由在拋物線上可得,即,所以直線的斜率,當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,此時(shí),當(dāng)且僅當(dāng),即時(shí),等號成立;當(dāng)時(shí),;綜上,直線的斜率的最大值為.【小結(jié)】關(guān)鍵點(diǎn)小結(jié):解決本題的關(guān)鍵是利用平面向量的知識求得點(diǎn)坐標(biāo)的關(guān)系,在求斜率的最值時(shí)要注意對取值范圍的討論.60.(1)拋物線,方程為;(2)相切,理由見解析【分析】(1)根據(jù)已知拋物線與相交,可得出拋物線開口向右,設(shè)出標(biāo)準(zhǔn)方程,再利用對稱性設(shè)出坐標(biāo),由,即可求出;由圓與直線相切,求出半徑,即可得出結(jié)論;(2)先考慮斜率不存在,根據(jù)對稱性,即可得出結(jié)論;若斜率存在,由三點(diǎn)在拋物線上,將直線斜率分別用縱坐標(biāo)表示,再由與圓相切,得出與的關(guān)系,最后求出點(diǎn)到直線的距離,即可得出結(jié)論.【解析】(1)依題意設(shè)拋物線,,所以拋物線的方程為,與相切,所以半徑為,所以的方程為;(2)設(shè)若斜率不存在,則方程為或,若方程為,根據(jù)對稱性不妨設(shè),則過與圓相切的另一條直線方程為,此時(shí)該直線與拋物線只有一個(gè)交點(diǎn),即不存在,不合題意;若方程為,根據(jù)對稱性不妨設(shè)則過與圓相切的直線為,又,,此時(shí)直線關(guān)于軸對稱,所以直線與圓相切;若直線斜率均存在,則,所以直線方程為,整理得,同理直線的方程為,直線的方程為,與圓相切,整理得,與圓相切,同理所以為方程的兩根,,到直線的距離為:,所以直線與圓相切;綜上若直線與圓相切,則直線與圓相切.【小結(jié)】關(guān)鍵點(diǎn)小結(jié):(1)過拋物線上的兩點(diǎn)直線斜率只需用其縱坐標(biāo)(或橫坐標(biāo))表示,將問題轉(zhuǎn)化為只與縱坐標(biāo)(或橫坐標(biāo))有關(guān);(2)要充分利用的對稱性,抽象出與關(guān)系,把的關(guān)系轉(zhuǎn)化為用表示.61.(1);(2).【分析】(1)求出的值后可求拋物線的方程.(2)設(shè),,,聯(lián)立直線的方程和拋物線的方程后可得,求出直線的方程,聯(lián)立各直線方程可求出,根據(jù)題設(shè)條件可得,從而可求的范圍.【解析】(1)因?yàn)?,故,故拋物線的方程為:.(2)設(shè),,,所以直線,由題設(shè)可得且.由可得,故,因?yàn)?,故,?又,由可得,同理,由可得,所以,整理得到,故,令,則且,故,故即,解得或或.故直線在軸上的截距的范圍為或或.【小結(jié)】方法小結(jié):直線與拋物線中的位置關(guān)系中的最值問題,往往需要根據(jù)問題的特征合理假設(shè)直線方程的形式,從而便于代數(shù)量的計(jì)算,對于構(gòu)建出的函數(shù)關(guān)系式,注意利用換元法等把復(fù)雜函數(shù)的范圍問題轉(zhuǎn)化為常見函數(shù)的范圍問題.62.(1),(為參數(shù));(2)或.【分析】(1)直接利用圓心及半徑可得的圓的參數(shù)方程;(2)先求得過(4,1)的圓的切線方程,再利用極坐標(biāo)與直角坐標(biāo)互化公式化簡即可.【解析】(1)由題意,的普通方程為,所以的參數(shù)方程為,(為參數(shù))(2)由題意,切線的斜率一定存在,設(shè)切線方程為,即,由圓心到直線的距離等于1可得,解得,所以切線方程為或,將,代入化簡得或【點(diǎn)晴】本題主要考查直角坐標(biāo)方程與極坐標(biāo)方程的互化,涉及到直線與圓的位置關(guān)系,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道基礎(chǔ)題.63.(1);(2).【分析】(1)根據(jù)圓的幾何性質(zhì)可得出關(guān)于的等式,即可解出的值;(2)設(shè)點(diǎn)、、,利用導(dǎo)數(shù)求出直線、,進(jìn)一步可求得直線的方程,將直線的方程與拋物線的方程聯(lián)立,求出以及點(diǎn)到直線的距離,利用三角形的面積公式結(jié)合二次函數(shù)的基本性質(zhì)可求得面積的最大值.【解析】(1)拋物線的焦點(diǎn)為,,所以,與圓上點(diǎn)的距離的最小值為,解得;(2)拋物線的方程為,即,對該函數(shù)求導(dǎo)得,設(shè)點(diǎn)、、,直線的方程為,即,即,同理可知,直線的方程為,由于點(diǎn)為這兩條直線的公共點(diǎn),則,所以,點(diǎn)、的坐標(biāo)滿足方程,所以,直線的方程為,聯(lián)立,可得,由韋達(dá)定理可得,,所以,,點(diǎn)到直線的距離為,所以,,,由已知可得,所以,當(dāng)時(shí),的面積取最大值.【小結(jié)】方法小結(jié):圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值.64.(1);(2).【分析】(1)利用雙曲線的定義可知軌跡是以點(diǎn)、為左、右焦點(diǎn)雙曲線的右支,求出、的值,即可得出軌跡的方程;(2)設(shè)點(diǎn),設(shè)直線的方程為,設(shè)點(diǎn)、,聯(lián)立直線與曲線的方程,列出韋達(dá)定理,求出的表達(dá)式,設(shè)直線的斜率為,同理可得出的表達(dá)式,由化簡可得的值.【解析】因?yàn)?,所以,軌跡是以點(diǎn)、為左、右焦點(diǎn)的雙曲線的右支,設(shè)軌跡的方程為,則,可得,,所以,軌跡的方程為;(2)設(shè)點(diǎn),若過點(diǎn)的直線的斜率不存在,此時(shí)該直線與曲線無公共點(diǎn),不妨直線的方程為,即,聯(lián)立,消去并整理可得,設(shè)點(diǎn)、,則且.由韋達(dá)定理可得,,所以,,設(shè)直線的斜率為,同理可得,因?yàn)?,即,整理可得,即,顯然,故.因此,直線與直線的斜率之和為.【小結(jié)】方法小結(jié):求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān);(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值.65.(1);(2)18.【分析】(1)由題意分別求得a,b的值即可確定橢圓方程;(2)首先利用幾何關(guān)系找到三角形面積最大時(shí)點(diǎn)N的位置,然后聯(lián)立直線方程與橢圓方程,結(jié)合判別式確定點(diǎn)N到直線AM的距離即可求得三角形面積的最大值.【解析】(1)由題意可知直線AM的方程為:,即.當(dāng)y=0時(shí),解得,所以a=4,橢圓過點(diǎn)M(2,3),可得,解得b2=12.所以C的方程:.(2)設(shè)與直線AM平行的直線方程為:,如圖所示,當(dāng)直線與橢圓相切時(shí),與AM距離比較遠(yuǎn)的直線與橢圓的切點(diǎn)為N,此時(shí)△AMN的面積取得最大值.聯(lián)立直線方程與橢圓方程,可得:,化簡可得:,所以,即m2=64,解得m=±8,與AM距離比較遠(yuǎn)的直線方程:,直線AM方程為:,點(diǎn)N到直線AM的距離即兩平行線之間的距離,利用平行線之間的距離公式可得:,由兩點(diǎn)之間距離公式可得.所以△AMN的面積的最大值:.【小結(jié)】解決直線與橢圓的綜合問題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題.66.(Ⅰ);(Ⅱ),或.【分析】(Ⅰ)根據(jù)題意,并借助,即可求出橢圓的方程;(Ⅱ)利用直線與圓相切,得到,設(shè)出直線的方程,并與橢圓方程聯(lián)立,求出點(diǎn)坐標(biāo),進(jìn)而求出點(diǎn)坐標(biāo),再根據(jù),求出直線的斜率,從而得解.【解析】(Ⅰ)橢圓的一個(gè)頂點(diǎn)為,,由,得,又由,得,所以,橢圓的方程為;(Ⅱ)直線與以為圓心的圓相切于點(diǎn),所以,根據(jù)題意可知,直線和直線的斜率均存在,設(shè)直線的斜率為,則直線的方程為,即,,消去,可得,解得或.將代入,得,所以,點(diǎn)的坐標(biāo)為,因?yàn)闉榫€段的中點(diǎn),點(diǎn)的坐標(biāo)為,所以點(diǎn)的坐標(biāo)為,由,得點(diǎn)的坐標(biāo)為,所以,直線的斜率為,又因?yàn)?,所以,整理得,解得?所以,直線的方程為或.【小結(jié)】本題考查了橢圓標(biāo)準(zhǔn)方程的求解、直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系、中點(diǎn)坐標(biāo)公式以及直線垂直關(guān)系的應(yīng)用,考查學(xué)生的運(yùn)算求解能力,屬于中檔題.當(dāng)看到題目中出現(xiàn)直線與圓錐曲線位置關(guān)系的問題時(shí),要想到聯(lián)立直線與圓錐曲線的方程.67.(Ⅰ);(Ⅱ)1.【分析】(Ⅰ)由題意得到關(guān)于a,b的方程組,求解方程組即可確定橢圓方程;(Ⅱ)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點(diǎn)P,Q的縱坐標(biāo),將線段長度的比值轉(zhuǎn)化為縱坐標(biāo)比值的問題,進(jìn)一步結(jié)合韋達(dá)定理可證得,從而可得兩線段長度的比值.【解析】(1)設(shè)橢圓方程為:,由題意可得:,解得:,故橢圓方程為:.(2)設(shè),,直線的方程為:,與橢圓方程聯(lián)立可得:,即:,則:.直線MA的方程為:,令可得:,同理可得:.很明顯,且:,注意到:,而:,故.從而.【小結(jié)】解決直線與橢圓的綜合問題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題.68.(1);(2)詳見解析.【分析】(1)由題意得到關(guān)于的方程組,求解方程組即可確定橢圓方程.(2)設(shè)出點(diǎn),的坐標(biāo),在斜率存在時(shí)設(shè)方程為,聯(lián)立直線方程與橢圓方程,根據(jù)已知條件,已得到的關(guān)系,進(jìn)而得直線恒過定點(diǎn),在直線斜率不存在時(shí)要單獨(dú)驗(yàn)證,然后結(jié)合直角三角形的性質(zhì)即可確定滿足題意的點(diǎn)的位置.【解析】(1)由題意可得:,解得:,故橢圓方程為:.(2)設(shè)點(diǎn),若直線斜率存在時(shí),設(shè)直線的方程為:,代入橢圓方程消去并整理得:,可得,,因?yàn)椋?,即,根?jù),代入整理可得:,所以,整理化簡得,因?yàn)椴辉谥本€上,所以,故,于是的方程為,所以直線過定點(diǎn)直線過定點(diǎn).當(dāng)直線的斜率不存在時(shí),可得,由得:,得,結(jié)合可得:,解得:或(舍).此時(shí)直線過點(diǎn).令為的中點(diǎn),即,若與不重合,則由題設(shè)知是的斜邊,故,若與重合,則,故存在點(diǎn),使得為定值.【小結(jié)】關(guān)鍵點(diǎn)小結(jié):本題的關(guān)鍵點(diǎn)是利用得,轉(zhuǎn)化為坐標(biāo)運(yùn)算,需要設(shè)直線的方程,點(diǎn),因此需要討論斜率存在與不存在兩種情況,當(dāng)直線斜率存在時(shí),設(shè)直線的方程為:,與橢圓方程聯(lián)立消去可,代入即可,當(dāng)直線的斜率不存在時(shí),可得,利用坐標(biāo)運(yùn)算以及三角形的性質(zhì)即可證明,本題易忽略斜率不存在的情況,屬于難題.69.(1)6;(2)-4;(3)或.【分析】(1)根據(jù)橢圓定義可得,從而可求出的周長;(2)設(shè),根據(jù)點(diǎn)在橢圓上,且在第一象限,,求出,根據(jù)準(zhǔn)線方程得點(diǎn)坐標(biāo),再根據(jù)向量坐標(biāo)公式,結(jié)合二次函數(shù)性質(zhì)即可出最小值;(3)設(shè)出設(shè),點(diǎn)到直線的距離為,由點(diǎn)到直線的距離與,可推出,根據(jù)點(diǎn)到直線的距離公式,以及滿足橢圓方程,解方程組即可求得坐標(biāo).【解析】(1)∵橢圓的方程為∴,由橢圓定義可得:.∴的周長為(2)設(shè),根據(jù)題意可得.∵點(diǎn)在橢圓上,且在第一象限,∴∵準(zhǔn)線方程為∴∴,當(dāng)且僅當(dāng)時(shí)取等號.∴的最小值為.(3)設(shè),點(diǎn)到直線的距離為.∵,∴直線的方程為∵點(diǎn)到直線的距離為,∴∴∴①∵②∴聯(lián)立①②解得,.∴或.【小結(jié)】本題考查了橢圓的定義,直線與橢圓相交問題、點(diǎn)到直線距離公式的運(yùn)用,熟悉運(yùn)用公式以及根據(jù)推出是解答本題的關(guān)鍵.70.(1);(2)證明詳見解析.【分析】(1)由已知可得:,,,即可求得,結(jié)合已知即可求得:,問題得解.(2)設(shè),可得直線的方程為:,聯(lián)立直線的方程與橢圓方程即可求得點(diǎn)的坐標(biāo)為,同理可得點(diǎn)的坐標(biāo)為,當(dāng)時(shí),可表示出直線的方程,整理直線的方程可得:即可知直線過定點(diǎn),當(dāng)時(shí),直線:,直線過點(diǎn),命題得證.【解析】(1)依據(jù)題意作出如下圖象:由橢圓方程可得:,,,,橢圓方程為:(2)證明:設(shè),則直線的方程為:,即:聯(lián)立直線的方程與橢圓方程可得:,整理得:,解得:或?qū)⒋胫本€可得:所以點(diǎn)的坐標(biāo)為.同理可得:點(diǎn)的坐標(biāo)為當(dāng)時(shí),直線的方程為:,整理可得:整理得:所以直線過定點(diǎn).當(dāng)時(shí),直線:,直線過點(diǎn).故直線CD過定點(diǎn).【小結(jié)】本題主要考查了橢圓的簡單性質(zhì)及方程思想,還考查了計(jì)算能力及轉(zhuǎn)化思想、推理論證能力,屬于難題.71.(1);(2):,:.【分析】(1)根據(jù)題意求出的方程,結(jié)合橢圓和拋物線的對稱性不妨設(shè)在第一象限,運(yùn)用代入法求出點(diǎn)的縱坐標(biāo),根據(jù),結(jié)合橢圓離心率的公式進(jìn)行求解即可;(2)由(1)可以得到橢圓的標(biāo)準(zhǔn)方程,確定橢圓的四個(gè)頂點(diǎn)坐標(biāo),再確定拋物線的準(zhǔn)線方程,最后結(jié)合已知進(jìn)行求解即可;【解析】解:(1)因?yàn)闄E圓的右焦點(diǎn)坐標(biāo)為:,所以拋物線的方程為,其中.不妨設(shè)在第一象限,因?yàn)闄E圓的方程為:,所以當(dāng)時(shí),有,因此的縱坐標(biāo)分別為,;又因?yàn)閽佄锞€的方程為,所以當(dāng)時(shí),有,所以的縱坐標(biāo)分別為,,故,.由得,即,解得(舍去),.所以的離心率為.(2)由(1)知,,故,所以的四個(gè)頂點(diǎn)坐標(biāo)分別為,,,,的準(zhǔn)線為.由已知得,即.所以的標(biāo)準(zhǔn)方程為,的標(biāo)準(zhǔn)方程為.【小結(jié)】本題考查了求橢圓的離心率,考查了求橢圓和拋物線的標(biāo)準(zhǔn)方程,考查了橢圓的四個(gè)頂點(diǎn)的坐標(biāo)以及拋物線的準(zhǔn)線方程,考查了數(shù)學(xué)運(yùn)算能力.72.(1)15(百米);(2)見解析;(3)17+(百米).【分析】解:解法一:(1)過A作,垂足為E.利用幾何關(guān)系即可求得道路PB的長;(2)分類討論P(yáng)和Q中能否有一個(gè)點(diǎn)選在D處即可.(3)先討論點(diǎn)P的位置,然后再討論點(diǎn)Q的位置即可確定當(dāng)d最小時(shí),P、Q兩點(diǎn)間的距離.解法二:(1)建立空間直角坐標(biāo)系,分別確定點(diǎn)P和點(diǎn)B的坐標(biāo),然后利用兩點(diǎn)之間距離公式可得道路PB的長;(2)分類討論P(yáng)和Q中能否有一個(gè)點(diǎn)選在D處即可.(3)先討論點(diǎn)P的位置,然后再討論點(diǎn)Q的位置即可確定當(dāng)d最小時(shí),P、Q兩點(diǎn)間的距離.【解析】解法一:(1)過A作,垂足為E.由已知條件得,四邊形ACDE為矩形,.因?yàn)镻B⊥AB,所以.所以.因此道路PB的長為15(百米).(2)①若P在D處,由(1)可得E在圓上,則線段BE上的點(diǎn)(除B,E)到點(diǎn)O的距離均小于圓O的半徑,所以P選在D處不滿足規(guī)劃要求.②若Q在D處,連結(jié)AD,由(1)知,從而,所以∠BAD為銳角.所以線段AD上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑.因此,Q選在D處也不滿足規(guī)劃要求.綜上,P和Q均不能選在D處.(3)先討論點(diǎn)P的位置.當(dāng)∠OBP<90°時(shí),線段PB上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑,點(diǎn)P不符合規(guī)劃要求;當(dāng)∠OBP≥90°時(shí),對線段PB上任意一點(diǎn)F,OF≥OB,即線段PB上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑,點(diǎn)P符合規(guī)劃要求.設(shè)為l上一點(diǎn),且,由(1)知,,此時(shí);當(dāng)∠OBP>90°時(shí),在中,.由上可知,d≥15.再討論點(diǎn)Q的位置.由(2)知,要使得QA≥15,點(diǎn)Q只有位于點(diǎn)C的右側(cè),才能符合規(guī)劃要求.當(dāng)QA=15時(shí),.此時(shí),線段QA上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.綜上,當(dāng)PB⊥AB,點(diǎn)Q位于點(diǎn)C右側(cè),且CQ=時(shí),d最小,此時(shí)P,Q兩點(diǎn)間的距離PQ=PD+CD+CQ=17+.因此,d最小時(shí),P,Q兩點(diǎn)間的距離為17+(百米).解法二:(1)如圖,過O作OH⊥l,垂足為H.以O(shè)為坐標(biāo)原點(diǎn),直線OH為y軸,建立平面直角坐標(biāo)系.因?yàn)锽D=12,AC=6,所以O(shè)H=9,直線l的方程為y=9,點(diǎn)A,B的縱坐標(biāo)分別為3,?3.因?yàn)锳B為圓O的直徑,AB=10,所以圓O的方程為x2+y2=25.從而A(4,3),B(?4,?3),直線AB的斜率為.因?yàn)镻B⊥AB,所以直線PB的斜率為,直線PB的方程為.所以P(?13,9),.因此道路PB的長為15(百米).(2)①若P在D處,取線段BD上一點(diǎn)E(?4,0),則EO=4<5,所以P選在D處不滿足規(guī)劃要求.②若Q在D處,連結(jié)AD,由(1)知D(?4,9),又A(4,3),所以線段AD:.在線段AD上取點(diǎn)M(3,),因?yàn)?,所以線段AD上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑.因此Q選在D處也不滿足規(guī)劃要求.綜上,P和Q均不能選在D處.(3)先討論點(diǎn)P的位置.當(dāng)∠OBP<90°時(shí),線段PB上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑,點(diǎn)P不符合規(guī)劃要求;當(dāng)∠OBP≥90°時(shí),對線段PB上任意一點(diǎn)F,OF≥OB,即線段PB上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑,點(diǎn)P符合規(guī)劃要求.設(shè)為l上一點(diǎn),且,由(1)知,,此時(shí);當(dāng)∠OBP>90°時(shí),在中,.由上可知,d≥15.再討論點(diǎn)Q的位置.由(2)知,要使得QA≥15,點(diǎn)Q只有位于點(diǎn)C的右側(cè),才能符合規(guī)劃要求.當(dāng)QA=15時(shí),設(shè)Q(a,9),由,得a=,所以Q(,9),此時(shí),線段QA上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.綜上,當(dāng)P(?13,9),Q(,9)時(shí),d最小,此時(shí)P,Q兩點(diǎn)間的距離.因此,d最小時(shí),P,Q兩點(diǎn)間的距離為(百米).【小結(jié)】本題主要考查三角函數(shù)的應(yīng)用、解方程、直線與圓等基礎(chǔ)知識,考查直觀想象和數(shù)學(xué)建模及運(yùn)用數(shù)學(xué)知識分析和解決實(shí)際問題的能力.73.(1);(2).【分析】(1)由題意分別求得a,b的值即可確定橢圓方程;(2)解法一:由題意首先確定直線的方程,聯(lián)立直線方程與圓的方程,確定點(diǎn)B的坐標(biāo),聯(lián)立直線BF2與橢圓的方程即可確定點(diǎn)E的坐標(biāo);解法二:由題意利用幾何關(guān)系確定點(diǎn)E的縱坐標(biāo),然后代入橢圓方程可得點(diǎn)E的坐標(biāo).【解析】(1)設(shè)橢圓C的焦距為2c.因?yàn)镕1(-1,0),F(xiàn)2(1,0),所以F1F2=2,c=1.又因?yàn)镈F1=,AF2⊥x軸,所以DF2=,因此2a=DF1+DF2=4,從而a=2.由b2=a2-c2,得b2=3.因此,橢圓C的標(biāo)準(zhǔn)方程為.(2)解法一:由(1)知,橢圓C:,a=2,因?yàn)锳F2⊥x軸,所以點(diǎn)A的橫坐標(biāo)為1.將x=1代入圓F2的方程(x-1)2+y2=16,解得y=±4.因?yàn)辄c(diǎn)A在x軸上方,所以A(1,4).又F1(-1,0),所以直線AF1:y=2x+2.由,得,解得或.將代入,得,因此.又F2(1,0),所以直線BF2:.由,得,解得或.又因?yàn)镋是線段BF2與橢圓的交點(diǎn),所以.將代入,得.因此.解法二:由(1)知,橢圓C:.如圖,連結(jié)EF1.因?yàn)锽F2=2a,EF1+EF2=2a,所以EF1=EB,從而∠BF1E=∠B.因?yàn)镕2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,從而EF1∥F2A.因?yàn)锳F2⊥x軸,所以EF1⊥x軸.因?yàn)镕1(-1,0),由,得.又因?yàn)镋是線段BF2與橢圓的交點(diǎn),所以.因此.【小結(jié)】本題主要考查直線方程、圓的方程、橢圓方程、橢圓的幾何性質(zhì)、直線與圓及橢圓的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、分析問題能力和運(yùn)算求解能力.74.(Ⅰ),;(Ⅱ)見解析.【分析】(Ⅰ)由題意結(jié)合點(diǎn)的坐標(biāo)可得拋物線方程,進(jìn)一步可得準(zhǔn)線方程;(Ⅱ)聯(lián)立準(zhǔn)線方程和拋物線方程,結(jié)合韋達(dá)定理可得圓心坐標(biāo)和圓的半徑,從而確定圓的方程,最后令x=0即可證得題中的結(jié)論.【解析】(Ⅰ)將點(diǎn)代入拋物線方程:可得:,故拋物線方程為:,其準(zhǔn)線方程為:.(Ⅱ)很明顯直線的斜率存在,焦點(diǎn)坐標(biāo)為,設(shè)直線方程為,與拋物線方程聯(lián)立可得:.故:.設(shè),則,直線的方程為,與聯(lián)立可得:,同理可得,易知以AB為直徑的圓的圓心坐標(biāo)為:,圓的半徑為:,且:,,則圓的方程為:,令整理可得:,解得:,即以AB為直徑的圓經(jīng)過y軸上的兩個(gè)定點(diǎn).【小結(jié)】本題主要考查拋物線方程的求解與準(zhǔn)線方程的確定,直線與拋物線的位置關(guān)系,圓的方程的求解及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.75.(1)或;(2)見解析.【分析】(1)設(shè),,根據(jù),可知;由圓的性質(zhì)可知圓心必在直線上,可設(shè)圓心;利用圓心到的距離為半徑和構(gòu)造方程,從而解出;(2)當(dāng)直線斜率存在時(shí),設(shè)方程為:,由圓的性質(zhì)可知圓心必在直線上;假設(shè)圓心坐標(biāo),利用圓心到的距離為半徑和構(gòu)造方程,解出坐標(biāo),可知軌跡為拋物線;利用拋物線定義可知為拋物線焦點(diǎn),且定值為;當(dāng)直線斜率不存在時(shí),求解出坐標(biāo),驗(yàn)證此時(shí)依然滿足定值,從而可得到結(jié)論.【解析】(1)在直線上設(shè),則又,解得:過點(diǎn),圓心必在直線上設(shè),圓的半徑為與相切又,即,解得:或當(dāng)時(shí),;當(dāng)時(shí),的半徑為:或(2)存在定點(diǎn),使得說明如下:,關(guān)于原點(diǎn)對稱且直線必為過原點(diǎn)的直線,且①當(dāng)直線斜率存在時(shí),設(shè)方程為:則的圓心必在直線上設(shè),的半徑為與相切又,整理可得:即點(diǎn)軌跡方程為:,準(zhǔn)線方程為:,焦點(diǎn),即拋物線上點(diǎn)到的距離當(dāng)與重合,即點(diǎn)坐標(biāo)為時(shí),②當(dāng)直線斜率不存在時(shí),則直線方程為:在軸上,設(shè),解得:,即若,則綜上所述,存在定點(diǎn),使得為定值.【小結(jié)】本題考查圓的方程的求解問題、圓錐曲線中的定點(diǎn)定值類問題.解決本定點(diǎn)定值問題的關(guān)鍵是能夠根據(jù)圓的性質(zhì)得到動(dòng)點(diǎn)所滿足的軌跡方程,進(jìn)而根據(jù)拋物線的定義得到定值,進(jìn)而驗(yàn)證定值符合所有情況,使得問題得解.76.(1);(2)2;(3)見解析【分析】(1)求解出點(diǎn)坐標(biāo),然后得到和,從而求得;(2)通過假設(shè)點(diǎn)坐標(biāo)得到直線方程,與拋物線聯(lián)立后得到,代入,整理得到結(jié)果;(3)由可知為中點(diǎn),假設(shè)三點(diǎn)坐標(biāo),代入,將式子整理為和的形式,然后通過平方運(yùn)算可得到,從而得到結(jié)論:.【解析】由題意可知:,準(zhǔn)線方程為:(1)因?yàn)槁?lián)立方程則(2)當(dāng)時(shí),易得設(shè),,直線,則聯(lián)立,由對稱性可知亦成立綜上所述,存在,使得(3)由可知為中點(diǎn)設(shè),則因?yàn)橛忠蛩浴拘〗Y(jié)】本題考查拋物線中的定值問題、直線與拋物線的綜合應(yīng)用.解決第三問三者之間關(guān)系的關(guān)鍵是能夠明確問題的本題,其本質(zhì)為三角形中的三邊關(guān)系問題:為的中線,則由三角形兩邊之和大于第三邊,可知;明確本質(zhì)之后即明確了證明方向,對于學(xué)生的轉(zhuǎn)化與化歸能力要求較高.77.(1);(2);(3)見解析.【分析】(1)方法一:設(shè)B點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)之間的距離公式,即可求得|BF|;方法二:根據(jù)拋物線的定義,即可求得|BF|;(2)根據(jù)拋物線的性質(zhì),求得Q點(diǎn)坐標(biāo),即可求得OD的中點(diǎn)坐標(biāo),即可求得直線PF的方程,代入拋物線方程,即可求得P點(diǎn)坐標(biāo),即可求得△AQP的面積;(3)設(shè)P及E點(diǎn)坐標(biāo),根據(jù)直線kPF?kFQ=﹣1,求得直線QF的方程,求得Q點(diǎn)坐標(biāo),根據(jù)+=,求得E點(diǎn)坐標(biāo),則()2=8(+6),即可求得P點(diǎn)坐標(biāo).【解析】(1)方法一:由題意可知:設(shè),則,∴;方法二:由題意可知:設(shè),由拋物線的性質(zhì)可知:,∴;(2),,,則,∴,∴,設(shè)的中點(diǎn),,,則直線方程:,聯(lián)立,整理得:,解得:,(舍去),∴的面積;(3)存在,設(shè),,則,,直線方程為,∴,,根據(jù),則,∴,解得:,∴存在以、為鄰邊的矩形,使得點(diǎn)在上,且.【小結(jié)】本題考查拋物線的性質(zhì),直線與拋物線的位置關(guān)系,考查轉(zhuǎn)化思想,計(jì)算能力,屬于中檔題.78.(Ⅰ);(Ⅱ);(Ⅲ).【分析】(Ⅰ)根據(jù)題干可得的方程組,求解的值,代入可得橢圓方程;(Ⅱ)設(shè)直線方程為,聯(lián)立,消整理得,利用根與系數(shù)關(guān)系及弦長公式表示出,求其最值;(Ⅲ)聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理寫出兩根關(guān)系,結(jié)合三點(diǎn)共線,利用共線向量基本定理得出等量關(guān)系,可求斜率.【解析】(Ⅰ)由題意得,所以,又,所以,所以,所以橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)直線的方程為,由消去可得,則,即,設(shè),,則,,則,易得當(dāng)時(shí),,故的最大值為;(Ⅲ)設(shè),,,,則①,②,又,所以可設(shè),直線的方程為,由消去可得,則,即,又,代入①式可得,所以,所以,同理可得.故,,因?yàn)槿c(diǎn)共線,所以,將點(diǎn)的坐標(biāo)代入化簡可得,即.【小結(jié)】本題主要考查橢圓與直線的位置關(guān)系,第一問只要找到三者之間的關(guān)系即可求解;第二問主要考查學(xué)生對于韋達(dá)定理及弦長公式的運(yùn)用,可將弦長公式變形為,再將根與系數(shù)關(guān)系代入求解;第三問考查橢圓與向量的綜合知識,關(guān)鍵在于能夠?qū)⑷c(diǎn)共線轉(zhuǎn)化為向量關(guān)系,再利用共線向量基本定理建立等量關(guān)系求解.79.(1),;(2)【解析】分析:(1)根據(jù)條件易得圓的半徑,即得圓的標(biāo)準(zhǔn)方程,再根據(jù)點(diǎn)在橢圓上,解方程組可得a,b,即得橢圓方程;(2)第一問先根據(jù)直線與圓相切得一方程,再根據(jù)直線與橢圓相切得另一方程,解方程組可得切點(diǎn)坐標(biāo).第二問先根據(jù)三角形面積得三角形底邊邊長,再結(jié)合①中方程組,利用求根公式以及兩點(diǎn)間距離公式,列方程,解得切點(diǎn)坐標(biāo),即得直線方程.解析:解:(1)因?yàn)闄E圓C的焦點(diǎn)為,可設(shè)橢圓C的方程為.又點(diǎn)在橢圓C上,所以,解得因此,橢圓C的方程為.因?yàn)閳AO的直徑為,所以其方程為.(2)①設(shè)直線l與圓O相切于,則,所以直線l的方程為,即.由,消去y,得.(*)因?yàn)橹本€l與橢圓C有且只有一個(gè)公共點(diǎn),所以.因?yàn)椋裕虼?,點(diǎn)P的坐標(biāo)為.②因?yàn)槿切蜲AB的面積為,所以,從而.設(shè),由(*)得,所以.因?yàn)?,所以,即,解得舍去),則,因此P的坐標(biāo)為.綜上,直線l的方程為.小結(jié):直線與橢圓的交點(diǎn)問題的處理一般有兩種處理方法:一是設(shè)出點(diǎn)的坐標(biāo),運(yùn)用“設(shè)而不求”思想求解;二是設(shè)出直線方程,與橢圓方程聯(lián)立,利用韋達(dá)定理求出交點(diǎn)坐標(biāo),適用于已知直線與橢圓的一個(gè)交點(diǎn)的情況.80.(1)取值范圍是(-∞,-3)∪(-3,0)∪(0,1)(2)證明過程見解析【解析】分析:(1)先確定p,再設(shè)直線方程,與拋物線聯(lián)立,根據(jù)判別式大于零解得直線l的斜率的取值范圍,最后根據(jù)PA,PB與y軸相交,舍去k=3,(2)先設(shè)A(x1,y1),B(x2,y2),與拋物線聯(lián)立,根據(jù)韋達(dá)定理可得,.再由,得,.利用直線PA,PB的方程分別得點(diǎn)M,N的縱坐標(biāo),代入化簡可得結(jié)論.解析:解:(Ⅰ)因?yàn)閽佄锞€y2=2px經(jīng)過點(diǎn)P(1,2),所以4=2p,解得p=2,所以拋物線的方程為y2=4x.由題意可知直線l的斜率存在且不為0,設(shè)直線l的方程為y=kx+1(k≠0).由得.依題意,解得k<0或0<k<1.又PA,PB與y軸相交,故直線l不過點(diǎn)(1,-2).從而k≠-3.所以直線l斜率的取值范圍是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)設(shè)A(x1,y1),B(x2,y2).由(I)知,.直線PA的方程為.令x=0,得點(diǎn)M的縱坐標(biāo)為.同理得點(diǎn)N的縱坐標(biāo)為.由,得,.所以.所以為定值.小結(jié):定點(diǎn)、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點(diǎn)”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒定的.定點(diǎn)、定值問題同證明問題類似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn).81.(1).(2).【解析】分析:(1)就根據(jù),以及,將方程中的相關(guān)的量代換,求得直角坐標(biāo)方程;(2)結(jié)合方程的形式,可以斷定曲線是圓心為,半徑為的圓,是過點(diǎn)且關(guān)于軸對稱的兩條射線,通過分析圖形的特征,得到什么情況下會(huì)出現(xiàn)三個(gè)公共點(diǎn),結(jié)合直線與圓的位置關(guān)系,得到k所滿足的關(guān)系式,從而求得結(jié)果.解析:(1)由,得的直角坐標(biāo)方程為.(2)由(1)知是圓心為,半徑為的圓.由題設(shè)知,是過點(diǎn)且關(guān)于軸對稱的兩條射線.記軸右邊的射線為,軸左邊的射線為.由于在圓的外面,故與有且僅有三個(gè)公共點(diǎn)等價(jià)于與只有一個(gè)公共點(diǎn)且與有兩個(gè)公共點(diǎn),或與只有一個(gè)公共點(diǎn)且與有兩個(gè)公共點(diǎn).當(dāng)與只有一個(gè)公共點(diǎn)時(shí),到所在直線的距離為,所以,故或.經(jīng)檢驗(yàn),當(dāng)時(shí),與沒有公共點(diǎn);當(dāng)時(shí),與只有一個(gè)公共點(diǎn),與有兩個(gè)公共點(diǎn).當(dāng)與只有一個(gè)公共點(diǎn)時(shí),到所在直線的距離為,所以,故或.經(jīng)檢驗(yàn),當(dāng)時(shí),與沒有公共點(diǎn);當(dāng)時(shí),與沒有公共點(diǎn).綜上,所求的方程為.小結(jié):該題考查的是有關(guān)坐標(biāo)系與參數(shù)方程的問題,涉及到的知識點(diǎn)有曲線的極坐標(biāo)方程向平面直角坐標(biāo)方程的轉(zhuǎn)化以及有關(guān)曲線相交交點(diǎn)個(gè)數(shù)的問題,在解題的過程中,需要明確極坐標(biāo)和平面直角坐標(biāo)之間的轉(zhuǎn)換關(guān)系,以及曲線相交交點(diǎn)個(gè)數(shù)結(jié)合圖形,將其轉(zhuǎn)化為直線與圓的位置關(guān)系所對應(yīng)的需要滿足的條件,從而求得結(jié)果.82.(1)(2)或【解析】分析:(1)設(shè)而不求,利用點(diǎn)差法進(jìn)行證明.(2)解出m,進(jìn)而求出點(diǎn)P的坐標(biāo),得到,再由兩點(diǎn)間距離公式表示出,得到直的方程,聯(lián)立直線與橢圓方程由韋達(dá)定理進(jìn)行求解.解析:(1)設(shè),則.兩式相減,并由得.由題設(shè)知,于是.①由題設(shè)得,故.(2)由題意得,設(shè),則.由(1)及題設(shè)得.又點(diǎn)P在C上,所以,從而,.于是.同理.所以.故,即成等差數(shù)列.設(shè)該數(shù)列的公差為d,則.②將代入①得.所以l的方程為,代入C的方程,并整理得.故,代入②解得.所以該數(shù)列的公差為或.小結(jié):本題主要考查直線與橢圓的位置關(guān)系,等差數(shù)列的性質(zhì),第一問利用點(diǎn)差法,設(shè)而不求可減小計(jì)算量,第二問由已知得到,求出m得到直線方程很關(guān)鍵,考查了函數(shù)與方程的思想,考察學(xué)生的計(jì)算能力,難度較大.83.(1)證明見解析(2)證明見解析【解析】分析:(1)設(shè)而不求,利用點(diǎn)差法,或假設(shè)直線方程,聯(lián)立方程組,由判別式和韋達(dá)定理進(jìn)行證明.(2)先求出點(diǎn)P的坐標(biāo),解出m,得到直線的方程,聯(lián)立直線與橢圓方程由韋達(dá)定理進(jìn)行求解.解析:(1)設(shè),,則,.兩式相減,并由得.由題設(shè)知,,于是.由題設(shè)得,故.(2)由題意得F(1,0).設(shè),則.由(1)及題設(shè)得,.又點(diǎn)P在C上,所以,從而,.于是.同理.所以.故.小結(jié):本題主要考查直線與橢圓的位置關(guān)系,第一問利用點(diǎn)差法,設(shè)而不求可減小計(jì)算量,第二問由已知得求出m,得到,再有兩點(diǎn)間距離公式表示出,考查了學(xué)生的計(jì)算能力,難度較大.84.(1)(2)為參數(shù),【解析】分析:(1)由圓與直線相交,圓心到直線距離可得.(2)聯(lián)立方程,由根與系數(shù)的關(guān)系求解解析:(1)的直角坐標(biāo)方程為.當(dāng)時(shí),與交于兩點(diǎn).當(dāng)時(shí),記,則的方程為.與交于兩點(diǎn)當(dāng)且僅當(dāng),解得或,即或.綜上,的取值范圍是.(2)的參數(shù)方程為為參數(shù),.設(shè),,對應(yīng)的參數(shù)分別為,,,則,且,滿足.于是,.又點(diǎn)的坐標(biāo)滿足所以點(diǎn)的軌跡的參數(shù)方程是為參數(shù),.小結(jié):本題主要考查直線與圓的位置關(guān)系,圓的參數(shù)方程,考查求點(diǎn)的軌跡方程,屬于中檔題.85.(Ⅰ)證明見解析;(Ⅱ).【分析】分析:(Ⅰ)設(shè)P,A,B的縱坐標(biāo)為,根據(jù)中點(diǎn)坐標(biāo)公式得PA,PB的中點(diǎn)坐標(biāo),代入拋物線方程,可得,即得結(jié)論;(Ⅱ)由(Ⅰ)可得△PAB面積為,利用根與系數(shù)的關(guān)系可表示為的函數(shù),根據(jù)半橢圓范圍以及二次函數(shù)性質(zhì)確定面積取值范圍.【解析】解析:(Ⅰ)設(shè),,.因?yàn)椋闹悬c(diǎn)在拋物線上,所以,為方程,即的兩個(gè)不同的實(shí)數(shù)根.所以.因此,垂直于軸.(Ⅱ)由(Ⅰ)可知所以,.因此,的面積.因?yàn)?,所以.因此,面積的取值范圍是.小結(jié):求范圍問題,一般利用條件轉(zhuǎn)化為對應(yīng)一元函數(shù)問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論