版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設是兩條不同的直線,是三個不同的平面,給出下列四個命題:①若,,則;②若,,,則;③若,,則;④若,,則.其中正確命題的序號是A.① B.②和③C.③和④ D.①和④2.已知,,,夾角為,如圖所示,若,,且D為BC中點,則的長度為A. B.C.7 D.83.設函數(shù)與的圖像的交點為,則所在的區(qū)間是()A. B.C. D.4.若角的終邊過點,則A. B.C. D.5.半徑為,圓心角為弧度的扇形的面積為()A. B.C. D.6.函數(shù)的零點所在的大致區(qū)間是A. B.C. D.7.已知,現(xiàn)要將兩個數(shù)交換,使,下面語句正確的是A. B.C. D.8.始邊是x軸正半軸,則其終邊位于第()象限A.一 B.二C.三 D.四9.設則的值為A. B.C.2 D.10.已知向量,,且,那么()A.2 B.-2C.6 D.-6二、填空題:本大題共6小題,每小題5分,共30分。11.用二分法求函數(shù)f(x)=3x-x-4的一個零點,其參考數(shù)據(jù)如下:f(1.6000)≈0.200f(1.5875)≈0.133f(1.5750)≈0.067f(1.5625)≈0.003f(1.5562)≈-0.029f(1.5500)≈-0.060據(jù)此數(shù)據(jù),可得方程3x-x-4=0的一個近似解為________(精確到0.01)12.已知一個銅質(zhì)的實心圓錐的底面半徑為6,高為3,現(xiàn)將它熔化后鑄成一個銅球(不計損耗),則該銅球的半徑是__________13.求值:____.14.當時,函數(shù)的最大值為________.15.化簡_____16.設函數(shù)f(x)的定義域為R,f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),當x∈[1,2]時,f(x)=ax2+b.若f(0)+f(3)=6,則f()=____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)滿足,且.(1)求的解析式;(2)求在上的值域.18.如圖,在中,,,點在的延長線上,點是邊上的一點,且存在非零實數(shù),使.(Ⅰ)求與的數(shù)量積;(Ⅱ)求與的數(shù)量積.19.已知函數(shù)fx=ax+b?a-x((1)判斷函數(shù)fx(2)判斷函數(shù)fx在0,+(3)若fm-3不大于b?f2,直接寫出實數(shù)條件①:a>1,b=1;條件②:0<a<1,b=-1.注:如果選擇條件①和條件②分別解答,按第一個解答計分.20.對于定義在上的函數(shù),如果存在實數(shù),使得,那么稱是函數(shù)的一個不動點.已知(1)當時,求的不動點;(2)若函數(shù)有兩個不動點,,且①求實數(shù)的取值范圍;②設,求證在上至少有兩個不動點21.已知角的頂點為坐標原點,始邊為軸的非負半軸,終邊經(jīng)過點,且.(1)求實數(shù)的值;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】結(jié)合直線與平面垂直的性質(zhì)和平行判定以及平面與平面的位置關系,逐項分析,即可.【詳解】①選項成立,結(jié)合直線與平面垂直的性質(zhì),即可;②選項,m可能屬于,故錯誤;③選項,m,n可能異面,故錯誤;④選項,該兩平面可能相交,故錯誤,故選A.【點睛】本題考查了直線與平面垂直的性質(zhì),考查了平面與平面的位置關系,難度中等.2、A【解析】AD為的中線,從而有,代入,根據(jù)長度進行數(shù)量積的運算便可得出的長度【詳解】根據(jù)條件:;故選A【點睛】本題考查模長公式,向量加法、減法及數(shù)乘運算,向量數(shù)量積的運算及計算公式,根據(jù)公式計算是關鍵,是基礎題.3、B【解析】根據(jù)零點所在區(qū)間的端點值的乘積小于零可得答案.【詳解】函數(shù)與的圖象的交點為,可得設,則是的零點,由,,∴,∴所在的區(qū)間是(1,2).故選:B.4、D【解析】角的終邊過點,所以.由角,得.故選D.5、A【解析】由扇形面積公式計算【詳解】由題意,故選:A6、C【解析】分別求出的值,從而求出函數(shù)的零點所在的范圍【詳解】由題意,,,所以,所以函數(shù)的零點所在的大致區(qū)間是,故選C.【點睛】本題考察了函數(shù)的零點問題,根據(jù)零點定理求出即可,本題是一道基礎題7、D【解析】通過賦值語句,可得,故選D.8、B【解析】將轉(zhuǎn)化為內(nèi)的角,即可判斷.【詳解】,所以的終邊和的終邊相同,即落在第二象限.故選:B9、D【解析】由題意可先求f(2),然后代入f(f(2))=f(﹣1)可得結(jié)果.【詳解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故選D【點睛】本題主要考查了分段函數(shù)的函數(shù)值的求解,解題的關鍵是需要判斷不同的x所對應的函數(shù)解析式,屬于基礎試題10、B【解析】根據(jù)向量共線的坐標表示,列出關于m的方程,解得答案.【詳解】由向量,,且,可得:,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、56【解析】注意到f(1.5562)=-0.029和f(1.5625)=0.003,顯然f(1.5562)f(1.5625)<0,故區(qū)間的端點四舍五入可得1.56.12、3【解析】設銅球的半徑為,則,得,故答案為.13、【解析】根據(jù)誘導公式以及正弦的兩角和公式即可得解【詳解】解:因為,故答案為:14、【解析】分子分母同除以,再利用基本不等式求解即可.【詳解】,,當且僅當時取等號,即函數(shù)的最大值為,故答案為:.15、-2【解析】利用余弦的二倍角公式和正切的商數(shù)關系可得答案.【詳解】.故答案為:.16、【解析】由f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),可得,,再結(jié)合已知的解析式可得,然后結(jié)合已知可求出,從而可得當時,,進而是結(jié)合前面的式子可求得答案【詳解】因為f(x+1)為奇函數(shù),所以的圖象關于點對稱,所以,且因為f(x+2)為偶函數(shù),所以的圖象關于直線對稱,,所以,即,所以,即,當x∈[1,2]時,f(x)=ax2+b,則,因為,所以,得,因為,所以,所以當時,,所以,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用換元法令,求得的表達式,代入即可求得參數(shù),即可得的解析式;(2)根據(jù)函數(shù)單調(diào)性,即可求得在上的值域.【詳解】(1)令,則,則.因為,所以,解得.故的解析式為.(2)由(1)知,在上為增函數(shù).因為,,所以在上的值域為.【點睛】本題考查了換元法求二次函數(shù)的解析式,根據(jù)函數(shù)單調(diào)性求函數(shù)的值域,屬于基礎題.18、(Ⅰ)-18;(Ⅱ).【解析】(Ⅰ)在中由余弦定理得,從而得到三角形為等腰三角形,可得,由數(shù)量積的定義可得.(Ⅱ)根據(jù)所給的向量式可得點在的角平分線上,故可得,所以,因為,所以得到.設設,則得到,,根據(jù)數(shù)量積的定義及運算率可得所求試題解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以點在的角平分線上,又因為點是邊上的一點,所以由角平分線性質(zhì)定理得,所以.因為,所以.設,則,由,得,所以,又,所以點睛:解題時注意在三角形中常見的向量與幾何特征的關系:(1)在中,若或,則點是的外心;(2)在中,若,則點是的重心;(3)在中,若,則直線一定過的重心;(4)在中,若,則點是的垂心;(5)在中,若,則直線通過的內(nèi)心.19、(1)答案見解析(2)答案見解析(3)答案見解析【解析】(1)定義域均為R,代入f-x化簡可得出與fx的關系,從而判斷奇偶性;(2)利用定義任取x1,x2∈0,+∞,且x1【小問1詳解】解:選擇條件①:a>1,函數(shù)fxfx的定義域為R,對任意x∈R,則-x∈R因為f-x所以函數(shù)fx是偶函數(shù)選擇條件②:0<a<1,函數(shù)fxfx的定義域為R,對任意x∈R,則-x∈R因為f-x所以函數(shù)fx是奇函數(shù)【小問2詳解】選擇條件①:a>1,fx在0,任取x1,x2∈因為a>1,所以ax所以f==ax所以fx在0,選擇條件②:0<a<1,fx在0,+∞任取x1,x因為0<a<1,所以ax所以f=ax所以fx在0,【小問3詳解】選擇條件①:a>1,實數(shù)m的取值范圍是-5,選擇條件②:0<a<1,實數(shù)m的取值范圍是-∞20、(1)的不動點為和;(2)①,②證明見解析.【解析】(1)當時,函數(shù),令,即可求解;(2)①由題意,得到的兩個實數(shù)根為,,設,根據(jù)二次函數(shù)的圖象與性質(zhì),列出不等式即可求解;②把可化為,設的兩個實數(shù)根為,,根據(jù)是方程的實數(shù)根,得出,結(jié)合函數(shù)單調(diào)性,即可求解.【詳解】(1)當時,函數(shù),方程可化為,解得或,所以的不動點為和(2)①因為函數(shù)有兩個不動點,,所以方程,即的兩個實數(shù)根為,,記,則的零點為和,因為,所以,即,解得.所以實數(shù)的取值范圍為②因為方程可化為,即因為,,所以有兩個不相等的實數(shù)根設的兩個實數(shù)根為,,不妨設因為函數(shù)圖象的對稱軸為直線,且,,,所以記,因為,且,所以是方程的實數(shù)根,所以1是的一個不動點,,因為,所以,,且的圖象在上的圖象是不間斷曲線,所以,使得,又因為在上單調(diào)遞增,所以,所以是的一個不動點,綜上,在上至少有兩個不動點【點睛】利用函數(shù)的圖象求解方程的根的個數(shù)或研究不等式問題的策略:1、利用函數(shù)的圖象研究方程的根的個數(shù):當方程與基本性質(zhì)有關時,可以通過函數(shù)圖象來研究方程的根,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國地震應急搜救中心公開招聘應屆畢業(yè)生5人高頻重點提升(共500題)附帶答案詳解
- 2025下半年黑龍江綏化學院招聘32人高頻重點提升(共500題)附帶答案詳解
- 2025下半年湖南常德市澧縣部分事業(yè)單位招聘9人高頻重點提升(共500題)附帶答案詳解
- 2025下半年浙江溫州市鹿城區(qū)事業(yè)單位招聘(選調(diào))擬聘高頻重點提升(共500題)附帶答案詳解
- 2025下半年江蘇鹽城市射陽縣機關和事業(yè)單位選調(diào)8人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年廣東清遠市直事業(yè)單位招聘31人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年安徽池州市貴池區(qū)事業(yè)單位招聘工作人員41人高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川廣元劍閣縣委組織部人社局考試招聘事業(yè)單位工作人員高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川事業(yè)單位聯(lián)考招聘歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年福建省寧德福安市事業(yè)單位招聘89人及歷年高頻重點提升(共500題)附帶答案詳解
- 機器人設備巡檢管理制度
- 帶式運輸機傳動裝置的設計
- DB50T 1689-2024 綠茶型老鷹茶加工技術(shù)規(guī)范
- 初級消防設施操作員實操題庫 (一)
- 國家職業(yè)技術(shù)技能標準 4-02-01-01 軌道列車司機(動車組司機)人社廳發(fā)2019121號
- CURTIS1232-1234-1236-SE-SERIES交流控制器手冊
- 2024年國家開放大學(電大)-混凝土結(jié)構(gòu)設計(A)考試近5年真題集錦(頻考類試題)帶答案
- 2024年山東省臨沂蘭山法院招聘司法輔助人員56人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 期末綜合素質(zhì)達標(試題)-2024-2025學年人教精通版英語五年級上冊
- 全國職業(yè)院校技能大賽高職組(商務數(shù)據(jù)分析賽項)備賽試題庫(含答案)
- 印刷數(shù)字工作流程智慧樹知到答案2024年上海出版印刷高等??茖W校
評論
0/150
提交評論