2022-2023學(xué)年唐徠回民中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2022-2023學(xué)年唐徠回民中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2022-2023學(xué)年唐徠回民中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2022-2023學(xué)年唐徠回民中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2022-2023學(xué)年唐徠回民中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.邊長為的正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將分別沿折起,使兩點(diǎn)重合于,則直線與平面所成角的正弦值為()A. B. C. D.2.已知函數(shù)f(x),則f[f(2)]=()A.1 B.2 C.3 D.43.閱讀如圖所示的算法框圖,輸出的結(jié)果S的值為A.8 B.6 C.5 D.44.在2018年1月15日那天,某市物價(jià)部門對本市的5家商場的某商品的一天銷售量及其價(jià)格進(jìn)行調(diào)查,5家商場的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如下表所示:價(jià)格x99.5m10.511銷售量y11n865由散點(diǎn)圖可知,銷售量y與價(jià)格x之間有較強(qiáng)的線性相關(guān)關(guān)系,其線性回歸方程是y=-3.2x+40,且m+n=20,則其中的n=A.10 B.11 C.12 D.10.55.同時(shí)拋擲兩個(gè)骰子,則向上的點(diǎn)數(shù)之和是的概率是()A. B. C. D.6.函數(shù)的周期為()A. B. C. D.7.已知數(shù)列是等差數(shù)列,數(shù)列滿足,的前項(xiàng)和用表示,若滿足,則當(dāng)取得最大值時(shí),的值為()A.16 B.15 C.14 D.138.中,則A. B. C. D.9.若cosα=13A.13 B.-13 C.10.已知是單位向量,.若向量滿足()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=________.12.已知向量,且,則_______.13.若函數(shù),的圖像關(guān)于對稱,則________.14.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》有這樣一個(gè)問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”其大意為:“有一個(gè)人要走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后達(dá)到目的地.”則該人最后一天走的路程為__________里.15.已知點(diǎn)是所在平面內(nèi)的一點(diǎn),若,則__________.16.無限循環(huán)小數(shù)化成最簡分?jǐn)?shù)為________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某種筆記本的單價(jià)是5元,買個(gè)筆記本需要y元,試用函數(shù)的三種表示法表示函數(shù).18.在中,內(nèi)角,,所對的邊分別為,,.若.(1)求角的度數(shù);(2)當(dāng)時(shí),求的取值范圍.19.已知扇形的半徑為3,面積為9,則該扇形的弧長為___________.20.已知數(shù)列,,,且.(1)設(shè),證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng);(2)若,并且數(shù)列的前項(xiàng)和為,不等式對任意正整數(shù)恒成立,求正整數(shù)的最小值.(注:當(dāng)時(shí),則)21.已知函數(shù)滿足且.(1)當(dāng)時(shí),求的表達(dá)式;(2)設(shè),求證:;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

在正方形中連接,交于點(diǎn),根據(jù)正方形的性質(zhì),在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點(diǎn),在折疊圖,連接,因?yàn)?,所以平面,所以,又因?yàn)?,所以平面,又因?yàn)槠矫?,所以平面,則是在平面上的射影,所以即為所求.因?yàn)楣蔬x:D【點(diǎn)睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.2、B【解析】

根據(jù)分段函數(shù)的表達(dá)式求解即可.【詳解】由題.故選:B【點(diǎn)睛】本題主要考查了分段函數(shù)的求值,屬于基礎(chǔ)題型.3、B【解析】

判斷框,即當(dāng)執(zhí)行到時(shí)終止循環(huán),輸出.【詳解】初始值,代入循環(huán)體得:,,,輸出,故選A.【點(diǎn)睛】本題由于循環(huán)體執(zhí)行的次數(shù)較少,所以可以通過列舉每次執(zhí)行后的值,直到循環(huán)終止,從而得到的輸出值.4、A【解析】

由表求得x,y,代入回歸直線方程16m+5n=210,聯(lián)立方程組,即可求解,得到答案.【詳解】由題意,5家商場的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù),可得x=9+9.5+m+10.5+115又由回歸直線的方程y=-3.2x+40,則30+n5=-3.2×又因?yàn)閙+n=20,解得m=10,n=10,故選A.【點(diǎn)睛】本題主要考查了回歸直線方程的特征及其應(yīng)用,其中解答中熟記回歸直線方程的特征,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】

由題意可知,基本事件總數(shù)為,然后列舉出事件“同時(shí)拋擲兩個(gè)骰子,向上的點(diǎn)數(shù)之和是”所包含的基本事件,利用古典概型的概率公式可計(jì)算出所求事件的概率.【詳解】同時(shí)拋擲兩個(gè)骰子,共有個(gè)基本事件,事件“同時(shí)拋擲兩個(gè)骰子,向上的點(diǎn)數(shù)之和是”所包含的基本事件有:、、、、,共個(gè)基本事件.因此,所求事件的概率為.故選:C.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.6、D【解析】

利用二倍角公式以及輔助角公式將函數(shù)化為,再利用三角函數(shù)的周期公式即可求解.【詳解】,函數(shù)的最小正周期為.故選:D【點(diǎn)睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的最小正周期的求法,屬于基礎(chǔ)題.7、A【解析】

設(shè)等差數(shù)列的公差為,根據(jù)得到,推出,判斷出當(dāng)時(shí),;時(shí),;再根據(jù),判斷出對取正負(fù)的影響,進(jìn)而可得出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)閿?shù)列是等差數(shù)列,,所以,因此,所以,所以,,因此,當(dāng)時(shí),;時(shí),,因?yàn)?,所以?dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,所以;因?yàn)樗?,?dāng)時(shí),取得最大值.故選:A【點(diǎn)睛】本題主要考查等差數(shù)列的應(yīng)用,熟記等差數(shù)列的性質(zhì),及其函數(shù)特征即可,屬于??碱}型.8、B【解析】試題分析:由余弦定理,故選擇B考點(diǎn):余弦定理9、D【解析】

利用二倍角余弦公式cos2α=2【詳解】由二倍角余弦公式可得cos2α=2【點(diǎn)睛】本題考查二倍角余弦公式的應(yīng)用,著重考查學(xué)生對二倍角公式熟記和掌握情況,屬于基礎(chǔ)題.10、A【解析】

因?yàn)?,,做出圖形可知,當(dāng)且僅當(dāng)與方向相反且時(shí),取到最大值;最大值為;當(dāng)且僅當(dāng)與方向相同且時(shí),取到最小值;最小值為.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】

根據(jù)圖象看出周期、特殊點(diǎn)的函數(shù)值,解出待定系數(shù)即可解得.【詳解】由圖可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【點(diǎn)睛】本題考查由圖象求正切函數(shù)的解析式,屬于中檔題。12、【解析】

先由向量共線,求出,再由向量模的坐標(biāo)表示,即可得出結(jié)果.【詳解】因?yàn)?,且,所以,解得,所以,因?故答案為【點(diǎn)睛】本題主要考查求向量的模,熟記向量共線的坐標(biāo)表示,以及向量模的坐標(biāo)表示即可,屬于基礎(chǔ)題型.13、【解析】

特殊值法:由的對稱軸是,所以即可算出【詳解】由題意得是三角函數(shù)所以【點(diǎn)睛】本題主要考查了三角函數(shù)的性質(zhì),需要記憶三角函數(shù)的基本性質(zhì):單調(diào)性、對稱軸、周期、定義域、最值、對稱中心等。根據(jù)對稱性取特殊值法解決本題是關(guān)鍵。屬于中等題。14、3【解析】分析:每天走的路形成等比數(shù)列{an},q=,S3=1.利用求和公式即可得出.詳解:每天走的路形成等比數(shù)列{an},q=,S3=1.∴S3=1=,解得a1=2.∴該人最后一天走的路程=a1q5==3.故答案為:3.點(diǎn)睛:本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.15、【解析】

設(shè)為的中點(diǎn),為的中點(diǎn),為的中點(diǎn),由得到,再進(jìn)一步分析即得解.【詳解】如圖,設(shè)為的中點(diǎn),為的中點(diǎn),為的中點(diǎn),因?yàn)?,所以可得,整理?又,所以,所以,又,所以.故答案為【點(diǎn)睛】本題主要考查向量的運(yùn)算法則和共線向量,意在考查學(xué)生對這些知識的理解掌握水平,解答本題的關(guān)鍵是作輔助線,屬于中檔題.16、【解析】

利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點(diǎn)睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析.【解析】

根據(jù)定義域,分別利用解析法,列表法,圖像法表示即可.【詳解】解:這個(gè)函數(shù)的定義域是數(shù)集.用解析法可將函數(shù)表示為,.用列表法可將函數(shù)表示為筆記本數(shù)12345錢數(shù)510152025用圖象法可將函數(shù)表示為:【點(diǎn)睛】本題考查函數(shù)的表示方法,注意函數(shù)的定義域,是基礎(chǔ)題.18、(1);(2).【解析】

(1)根據(jù)余弦定理即可解決.(2)根據(jù)向量的三角形法則即可解決.【詳解】(1)因?yàn)?,所以得,所以,所以,因?yàn)樗?;?)取的中點(diǎn),則,,所以所以,從而由平行四邊形性質(zhì)有故.【點(diǎn)睛】本題主要考查了余弦定理以及向量的三角形法則,其中第二問用了完全平方以及加減消元的思想,是本題的一個(gè)難點(diǎn).解決本題的關(guān)鍵是畫一個(gè)三角形結(jié)合三角形進(jìn)行分析.19、6【解析】

直接利用扇形的面積公式,即可得到本題答案.【詳解】因?yàn)樯刃蔚陌霃剑刃蔚拿娣e,由,得,所以該扇形的弧長為6.故答案為:6【點(diǎn)睛】本題主要考查扇形的面積公式的應(yīng)用.20、(1)證明見解析,(2)10【解析】

(1)根據(jù)等比數(shù)列的定義,結(jié)合題中條件,計(jì)算,,即可證明數(shù)列是等比數(shù)列,求出;再根據(jù)累加法,即可求出數(shù)列的通項(xiàng);(2)根據(jù)題意,得到,分別求出,當(dāng),用放縮法得,根據(jù)裂項(xiàng)相消法求,進(jìn)而可求出結(jié)果.【詳解】(1)證明:,而∴是以4為首項(xiàng)2為公比的等比數(shù)列,,∴即,,所以,,......,,以上各式相加得:;∴;(2)由(1)得:,,,,,由已知條件知當(dāng)時(shí),,即∴,而綜上所述得最小值為10.【點(diǎn)睛】本題主要考查證明數(shù)列為等比數(shù)列,求數(shù)列的通項(xiàng)公式,以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論