高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點零點有沒有極最符號異與否 (含解析)_第1頁
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點零點有沒有極最符號異與否 (含解析)_第2頁
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點零點有沒有極最符號異與否 (含解析)_第3頁
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點零點有沒有極最符號異與否 (含解析)_第4頁
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點零點有沒有極最符號異與否 (含解析)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高考資源網(wǎng)(),您身邊的高考專家全品高考網(wǎng)歡迎廣大教師踴躍來稿,稿酬豐厚。高考資源網(wǎng)(),您身邊的高考專家歡迎廣大教師踴躍來稿,稿酬豐厚。高考數(shù)學(xué)壓軸難題歸納總結(jié)提高培優(yōu)專題2.12交點零點有沒有極最符號異與否【題型綜述】導(dǎo)數(shù)研究函數(shù)圖象交點及零點問題

利用導(dǎo)數(shù)來探討函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象的交點問題,有以下幾個步驟:①構(gòu)造函數(shù)SKIPIF1<0;②求導(dǎo)SKIPIF1<0;③研究函數(shù)SKIPIF1<0的單調(diào)性和極值(必要時要研究函數(shù)圖象端點的極限情況);④畫出函數(shù)SKIPIF1<0的草圖,觀察與SKIPIF1<0軸的交點情況,列不等式;⑤解不等式得解.探討函數(shù)SKIPIF1<0的零點個數(shù),往往從函數(shù)的單調(diào)性和極值入手解決問題,結(jié)合零點存在性定理求解.【典例指引】例1.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(I)若曲線SKIPIF1<0在點(1,SKIPIF1<0)處的切線與直線SKIPIF1<0垂直,求a的值;(II)當(dāng)SKIPIF1<0時,試問曲線SKIPIF1<0與直線SKIPIF1<0是否有公共點?如果有,求出所有公共點;若沒有,請說明理由.【思路引導(dǎo)】(1)根據(jù)導(dǎo)數(shù)的幾何意義得到SKIPIF1<0,即SKIPIF1<0;(2)構(gòu)造函數(shù)SKIPIF1<0,研究這個函數(shù)的單調(diào)性,它和軸的交點個數(shù)即可得到SKIPIF1<0在(0,1)SKIPIF1<0(SKIPIF1<0)恒負(fù),SKIPIF1<0,故只有一個公共點.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在(SKIPIF1<0)單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在(0,1)單調(diào)遞增.又SKIPIF1<0,所以SKIPIF1<0在(0,1)SKIPIF1<0(SKIPIF1<0)恒負(fù)因此,曲線SKIPIF1<0與直線SKIPIF1<0僅有一個公共點,公共點為(1,-1).例2.已知函數(shù)f(x)=lnx,h(x)=ax(a為實數(shù))(1)函數(shù)f(x)的圖象與h(x)的圖象沒有公共點,求實數(shù)a的取值范圍;(2)是否存在實數(shù)m,使得對任意的SKIPIF1<0都有函數(shù)SKIPIF1<0的圖象在函數(shù)SKIPIF1<0圖象的下方?若存在,請求出整數(shù)m的最大值;若不存在,說明理由(SKIPIF1<0)【思路引導(dǎo)】(Ⅰ)函數(shù)SKIPIF1<0與SKIPIF1<0無公共點轉(zhuǎn)化為方程SKIPIF1<0在SKIPIF1<0無解,令SKIPIF1<0,得出SKIPIF1<0是唯一的極大值點,進(jìn)而得到SKIPIF1<0,即可求解實數(shù)SKIPIF1<0取值范圍;(Ⅱ)由不等式SKIPIF1<0對SKIPIF1<0恒成立,即SKIPIF1<0對SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,再令SKIPIF1<0,轉(zhuǎn)化為利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性和極值,即可得出結(jié)論.當(dāng)且僅當(dāng)SKIPIF1<0故實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0∴存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,………9分∴當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,則SKIPIF1<0取到最小值SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增SKIPIF1<0,∴存在實數(shù)SKIPIF1<0滿足題意,且最大整數(shù)SKIPIF1<0的值為SKIPIF1<0.例3.已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.(1)求函數(shù)f(x)的解析式;(2)求函數(shù)SKIPIF1<0的零點個數(shù).【思路引導(dǎo)】(1)根據(jù)SKIPIF1<0是二次函數(shù),且關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,設(shè)出函數(shù)解析式,利用函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,可求函數(shù)SKIPIF1<0的解析式;(2)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,可得當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,結(jié)合單調(diào)性由此可得結(jié)論.(2)∵SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0變化時,SKIPIF1<0,SKIPIF1<0的取值變化情況如下:SKIPIF1<0SKIPIF1<01SKIPIF1<03SKIPIF1<0SKIPIF1<0+0-0+SKIPIF1<0遞增極大值遞減極小值遞增當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,又因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因而SKIPIF1<0在SKIPIF1<0上只有1個零點,故SKIPIF1<0在SKIPIF1<0上僅有1個零點.點睛:本題主要考查二次函數(shù)與一元二次不等式的關(guān)系,即一元二次不等式的解集區(qū)間的端點值即為對應(yīng)二次函數(shù)的零點,同時用導(dǎo)數(shù)研究函數(shù)圖象的意識、考查數(shù)形結(jié)合思想,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,根據(jù)零點存在性定理與單調(diào)性相結(jié)合可得零點個數(shù).例4.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(Ⅰ)求證:當(dāng)SKIPIF1<0時,SKIPIF1<0;(Ⅱ)若函數(shù)SKIPIF1<0在(1,+∞)上有唯一零點,求實數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(Ⅰ)求導(dǎo)SKIPIF1<0,得SKIPIF1<0,分析單調(diào)性得當(dāng)SKIPIF1<0時,SKIPIF1<0即得證;(Ⅱ)SKIPIF1<0對t進(jìn)行討論①SKIPIF1<0,SKIPIF1<0在[1,+∞)上是增函數(shù),所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在(1,+∞)上沒有零點,②若SKIPIF1<0,SKIPIF1<0在[1,+∞)上是減函數(shù),所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在(1,+∞)上沒有零點,③若0<t<1時分析單調(diào)性借助于第一問,找到SKIPIF1<0,則當(dāng)SKIPIF1<0時SKIPIF1<0,即SKIPIF1<0成立;取SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,說明存在SKIPIF1<0,使得SKIPIF1<0,即存在唯一零點.(Ⅱ)SKIPIF1<0①若SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在[1,+∞)上是增函數(shù),所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在(1,+∞)上沒有零點,所以SKIPIF1<0不滿足條件.②若SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在[1,+∞)上是減函數(shù),所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在(1,+∞)上沒有零點,所以SKIPIF1<0不滿足條件.點睛:本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值;考查了分類討論的思想;處理0<t<1時,注意前后問間的聯(lián)系,找到SKIPIF1<0,使得SKIPIF1<0,根據(jù)單調(diào)性說明唯一存在,這是本題的難點所在;【同步訓(xùn)練】1.已知函數(shù)SKIPIF1<0.(Ⅰ)若SKIPIF1<0在SKIPIF1<0處取極值,求SKIPIF1<0在點SKIPIF1<0處的切線方程;(Ⅱ)當(dāng)SKIPIF1<0時,若SKIPIF1<0有唯一的零點SKIPIF1<0,求證:SKIPIF1<0【思路引導(dǎo)】本題考查導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)在研究函數(shù)單調(diào)性、極值中的應(yīng)用.(Ⅰ)根據(jù)函數(shù)在SKIPIF1<0處取極值可得SKIPIF1<0,然后根據(jù)導(dǎo)數(shù)的幾何意義求得切線方程即可.(Ⅱ)由(Ⅰ)知SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.結(jié)合函數(shù)的單調(diào)性和函數(shù)值可得SKIPIF1<0在SKIPIF1<0上有唯一零點,設(shè)為SKIPIF1<0,證明SKIPIF1<0即可得結(jié)論.(Ⅱ)由(Ⅰ)知SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0;又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上有唯一零點,設(shè)為SKIPIF1<0,從而可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0有唯一零點SKIPIF1<0,故SKIPIF1<0且SKIPIF1<02.已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,若函數(shù)SKIPIF1<0恰有一個零點,求實數(shù)SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0,SKIPIF1<0時,對任意SKIPIF1<0,有SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)討論SKIPIF1<0、SKIPIF1<0兩種情況,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性,利用零點存在定理可得函數(shù)SKIPIF1<0恰有一個零點時實數(shù)SKIPIF1<0的取值范圍;(2)對任意SKIPIF1<0,有SKIPIF1<0成立,等價于SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,分別求出最大值與最小值,解不等式即可的結(jié)果.②當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.要使函數(shù)SKIPIF1<0有一個零點,則SKIPIF1<0即SKIPIF1<0.綜上所述,若函數(shù)SKIPIF1<0恰有一個零點,則SKIPIF1<0或SKIPIF1<0.(2)因為對任意SKIPIF1<0,有SKIPIF1<0成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,所以SKIPIF1<0.從而SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0即SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,所以SKIPIF1<0,即為SKIPIF1<0,解得SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.3.已知函數(shù)SKIPIF1<0(I)若函數(shù)SKIPIF1<0處取得極值,求實數(shù)SKIPIF1<0的值;并求此時SKIPIF1<0上的最大值;(Ⅱ)若函數(shù)SKIPIF1<0不存在零點,求實數(shù)a的取值范圍;【思路引導(dǎo)】(1)根據(jù)函數(shù)的極值的概念得到SKIPIF1<0,SKIPIF1<0,根據(jù)函數(shù)的單調(diào)性得到函數(shù)的最值.(2)研究函數(shù)的單調(diào)性,找函數(shù)和軸的交點,使得函數(shù)和軸沒有交點即可;分SKIPIF1<0和SKIPIF1<0,兩種情況進(jìn)行討論.(2)SKIPIF1<0,由于SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0是增函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0存在零點.②當(dāng)SKIPIF1<0時,SKIPIF1<0.在SKIPIF1<0上SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0時SKIPIF1<0取最小值.函數(shù)SKIPIF1<0不存在零點,等價于SKIPIF1<0,解得SKIPIF1<0.綜上所述:所求的實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.點睛:這個題目考查的是另用導(dǎo)數(shù)研究函數(shù)的極值和最值問題,函數(shù)的零點問題;對于函數(shù)有解求參的問題,常用的方法是,轉(zhuǎn)化為函數(shù)圖像和軸的交點問題,或者轉(zhuǎn)化為兩個函數(shù)圖像的交點問題,還可以轉(zhuǎn)化為方程的根的問題.4.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0是自然數(shù)的底數(shù),SKIPIF1<0.(Ⅰ)求實數(shù)SKIPIF1<0的單調(diào)區(qū)間.(Ⅱ)當(dāng)SKIPIF1<0時,試確定函數(shù)SKIPIF1<0的零點個數(shù),并說明理由.【思路引導(dǎo)】(Ⅰ)SKIPIF1<0,令SKIPIF1<0,解出SKIPIF1<0,SKIPIF1<0,解出SKIPIF1<0,即可得SKIPIF1<0的單調(diào)區(qū)間(Ⅱ)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,現(xiàn)考慮函數(shù)SKIPIF1<0的零點,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,考慮函數(shù)SKIPIF1<0與SKIPIF1<0的交點,兩者相切SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0,所以SKIPIF1<0,故函數(shù)SKIPIF1<0與SKIPIF1<0無交點,即可得結(jié)果.點睛:本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)區(qū)間,研究函數(shù)零點問題,第二問中對SKIPIF1<0進(jìn)行這樣處理,很容易確定一個零點0,考慮函數(shù)SKIPIF1<0的零點時使用換元法,簡化函數(shù)式,很容易利用初等函數(shù)即可解決.5.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(Ⅰ)求曲線SKIPIF1<0在SKIPIF1<0處的切線方程.(Ⅱ)求SKIPIF1<0的單調(diào)區(qū)間.(Ⅲ)設(shè)SKIPIF1<0,其中SKIPIF1<0,證明:函數(shù)SKIPIF1<0僅有一個零點.【思路引導(dǎo)】(Ⅰ)求導(dǎo)SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0可得SKIPIF1<0在SKIPIF1<0處的切線方程(Ⅱ)令SKIPIF1<0,解出SKIPIF1<0,令SKIPIF1<0,解出SKIPIF1<0,可得SKIPIF1<0的單調(diào)區(qū)間.(Ⅲ)SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0極大值SKIPIF1<0,SKIPIF1<0極小值SKIPIF1<0可得SKIPIF1<0在SKIPIF1<0無零點,在SKIPIF1<0有一個零點,所以SKIPIF1<0有且僅有一個零點.點睛:本題考查了利用導(dǎo)數(shù)求函數(shù)在某點處的切線,考查了函數(shù)的單調(diào)區(qū)間,考查了利用導(dǎo)數(shù)研究零點問題,注意SKIPIF1<0處理時采用因式分解很容易得出SKIPIF1<0的根,考查了學(xué)生推理運(yùn)算的能力,屬于中檔題.6.設(shè)函數(shù)SKIPIF1<0(Ⅰ)當(dāng)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù))時,求SKIPIF1<0的極小值;(Ⅱ)若函數(shù)SKIPIF1<0存在唯一零點,求SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點,列表分析導(dǎo)函數(shù)符號變化規(guī)律,進(jìn)而確定極值(2)先化簡SKIPIF1<0,再利用參變分離法得SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0,由圖像可得存在唯一零點時SKIPIF1<0的取值范圍試題解析:(1)由題設(shè),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.∴當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,結(jié)合SKIPIF1<0的圖象(如圖),可知當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有且只有一個零點;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有且只有一個零點.所以,當(dāng)SKIPIF1<0或SKIPIF1<0時,函數(shù)SKIPIF1<0有且只有一個零點.點睛:利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.7.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的極值;(2)若函數(shù)SKIPIF1<0有兩個零點,求實數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)函數(shù)求導(dǎo)得SKIPIF1<0,討論導(dǎo)數(shù)的單調(diào)性即可得極值;(2)函數(shù)求導(dǎo)得SKIPIF1<0,討論SKIPIF1<0,SKIPIF1<0,SKIPIF1<0和SKIPIF1<0時函數(shù)的單調(diào)性及最值即可下結(jié)論.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時,易知函數(shù)SKIPIF1<0只有一個零點,不符合題意;當(dāng)SKIPIF1<0時,在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0→SKIPIF1<0,SKIPIF1<0→SKIPIF1<0,所以函數(shù)SKIPIF1<0有兩個零點.當(dāng)SKIPIF1<0時,在SKIPIF1<0和SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0,函數(shù)SKIPIF1<0至多有一個零點,不符合題意.當(dāng)SKIPIF1<0時,在SKIPIF1<0和SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞增;在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0,函數(shù)SKIPIF1<0至多有一個零點,不符合題意.綜上:實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.點睛:根據(jù)函數(shù)零點求參數(shù)取值,也是高考經(jīng)常涉及的重點問題,(1)利用零點存在的判定定理構(gòu)建不等式求解;(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解,如果涉及由幾個零點時,還需考慮函數(shù)的圖象與參數(shù)的交點個數(shù);(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.8.已知SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的增區(qū)間;(2)若函數(shù)SKIPIF1<0有兩個零點,求實數(shù)SKIPIF1<0的取值范圍,并說明理由;(3)設(shè)正實數(shù)SKIPIF1<0,SKIPIF1<0滿足當(dāng)SKIPIF1<0時,求證:對任意的兩個正實數(shù)SKIPIF1<0,SKIPIF1<0總有SKIPIF1<0.(參考求導(dǎo)公式:SKIPIF1<0)【思路引導(dǎo)】(1)求導(dǎo)SKIPIF1<0,對SKIPIF1<0進(jìn)行分類討論,可得函數(shù)SKIPIF1<0的增區(qū)間;(2)由(1)知:若SKIPIF1<0函數(shù)在SKIPIF1<0的上為增函數(shù),函數(shù)SKIPIF1<0有至多有一個零點,不合題意.若SKIPIF1<0可知SKIPIF1<0,要使得函數(shù)SKIPIF1<0有兩個零點,則SKIPIF1<0SKIPIF1<0,以下證明SKIPIF1<0函數(shù)SKIPIF1<0有兩個零點即可(3)證明:不妨設(shè)SKIPIF1<0,以SKIPIF1<0為變量,令SKIPIF1<0,則可以證明SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;因為SKIPIF1<0所以SKIPIF1<0,這樣就證明了SKIPIF1<0SKIPIF1<0而SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0存在惟一零點;又SKIPIF1<0令SKIPIF1<0SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上遞增,所以的SKIPIF1<0SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0也存在惟一零點;綜上:SKIPIF1<0函數(shù)SKIPIF1<0有兩個零點方法2:(先證:SKIPIF1<0有SKIPIF1<0)SKIPIF1<0SKIPIF1<0而SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0也存在惟一零點;綜上:SKIPIF1<0,函數(shù)SKIPIF1<0有兩個零點.(3)證明:不妨設(shè)SKIPIF1<0,以SKIPIF1<0為變量令SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0;即SKIPIF1<0在定義域內(nèi)遞增.又因為SKIPIF1<0且SKIPIF1<0所以SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0;又因為SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;因為SKIPIF1<0所以SKIPIF1<0即SKIPIF1<0【點睛】本題考查運(yùn)用導(dǎo)數(shù)知識研究函數(shù)的圖象與性質(zhì)、函數(shù)的應(yīng)用、不等式問題、數(shù)學(xué)歸納法等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力,考查數(shù)形結(jié)合思想、函數(shù)與方程思想、特殊與一般思想等.9.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)令SKIPIF1<0,討論函數(shù)SKIPIF1<0的零點的個數(shù);(3)若SKIPIF1<0,正實數(shù)SKIPIF1<0滿足SKIPIF1<0,證明SKIPIF1<0【思路引導(dǎo)】(1)求出SKIPIF1<0的解析式,求出切點坐標(biāo),再求出SKIPIF1<0,由出SKIPIF1<0的值,可得切線斜率,利用點斜式求出切線方程即可;(2)求導(dǎo)數(shù),分三種情況討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,分別結(jié)合函數(shù)單調(diào)性判斷出函數(shù)SKIPIF1<0的零點的個數(shù);(3)SKIPIF1<0,化為SKIPIF1<0,設(shè)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,然后結(jié)合函數(shù)單調(diào)性得到SKIPIF1<0,解不等式可得結(jié)論.(3)證明:當(dāng)所以即為:所以令所以所以所以因為【方法點晴】本題主要考查利用導(dǎo)數(shù)求曲線切線以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于難題.求曲線切線方程的一般步驟是:(1)求出SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù),即SKIPIF1<0在點SKIPIF1<0SKIPIF1<0出的切線斜率(當(dāng)曲線SKIPIF1<0在SKIPIF1<0處的切線與SKIPIF1<0軸平行時,在處導(dǎo)數(shù)不存在,切線方程為SKIPIF1<0);(2)由點斜式求得切線方程SKIPIF1<0.10.已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)判斷函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上零點的個數(shù);(2)當(dāng)SKIPIF1<0時,若在SKIPIF1<0(SKIPIF1<0)上存在一點SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,求得導(dǎo)數(shù),利用函數(shù)單調(diào)性可以求得函數(shù)極值點以此判斷函數(shù)SKIPIF1<0在SKIPIF1<0上的零點個數(shù);SKIPIF1<0本題不宜分離,因此作差構(gòu)造函數(shù)SKIPIF1<0,利用分類討論法求函數(shù)最小值,由于SKIPIF1<0,所以討論SKIPIF1<0與SKIPIF1<0的大小,分三種情況,當(dāng)SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,解對應(yīng)不等式即可.②當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0.③當(dāng)SKIPIF1<0,即SKIPIF1<0時,可得SKIPIF1<0的最小值為SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0不成立.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.點睛:對于求不等式成立時的參數(shù)范圍問題,在可能的情況下把參數(shù)分離出來,使不等式一端是含有參數(shù)的不等式,另一端是一個區(qū)間上具體的函數(shù),這樣就把問題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問題的解決.但要注意分離參數(shù)法不是萬能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.11.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在SKIPIF1<0處的切線方程;(2)試判斷SKIPIF1<0在區(qū)間SKIPIF1<0上有沒有零點?若有則判斷零點的個數(shù).【思路引導(dǎo)】(1)利用導(dǎo)數(shù)的幾何意義求切線方程.(2)利用導(dǎo)數(shù)求出函數(shù)的極大值和極小值,判斷極值與0的關(guān)系明確零點個數(shù).試題解析:12.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0為自然對數(shù)的底數(shù).(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時,討論函數(shù)SKIPIF1<0的定義域內(nèi)的零點個數(shù).【思路引導(dǎo)】(1)求出SKIPIF1<0,SKIPIF1<0求得SKIPIF1<0的范圍,可得函數(shù)SKIPIF1<0增區(qū)間,SKIPIF1<0求得SKIPIF1<0的范圍,可得函數(shù)SKIPIF1<0的減區(qū)間,根據(jù)單調(diào)性可得函數(shù)的極值;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可證明函數(shù)SKIPIF1<0恒成立,即證明SKIPIF1<0在定義域內(nèi)無零點.試題解析:(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0單調(diào)增,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0單調(diào)減,所以SKIPIF1<0是SKIPIF1<0的極大值點,極大值是SKIPIF1<0.(2)由已知SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,【方法點睛】本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、函數(shù)的極值以及函數(shù)零點問題,屬于難題.求函數(shù)SKIPIF1<0極值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù)SKIPIF1<0;(3)解方程SKIPIF1<0求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查SKIPIF1<0在SKIPIF1<0的根SKIPIF1<0左右兩側(cè)值的符號,如果左正右負(fù)(左增右減),那么SKIPIF1<0在SKIPIF1<0處取極大值,如果左負(fù)右正(左減右增),那么SKIPIF1<0在SKIPIF1<0處取極小值.13.已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論