




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
回歸分析的基本思想及其初步應(yīng)用第1頁,課件共37頁,創(chuàng)作于2023年2月
比《數(shù)學3》中“回歸”增加的內(nèi)容數(shù)學3——統(tǒng)計畫散點圖了解最小二乘法的思想求回歸直線方程y=bx+a用回歸直線方程解決應(yīng)用問題選修1-2——統(tǒng)計案例引入線性回歸模型y=bx+a+e了解模型中隨機誤差項e產(chǎn)生的原因了解相關(guān)指數(shù)R2
和模型擬合的效果之間的關(guān)系了解殘差圖的作用利用線性回歸模型解決一類非線性回歸問題正確理解分析方法與結(jié)果第2頁,課件共37頁,創(chuàng)作于2023年2月問題1:正方形的面積y與正方形的邊長x之間的函數(shù)關(guān)系是y=x2確定性關(guān)系問題2:某水田水稻產(chǎn)量y與施肥量x之間是否-------有一個確定性的關(guān)系?例如:在7塊并排、形狀大小相同的試驗田上進行施肥量對水稻產(chǎn)量影響的試驗,得到如下所示的一組數(shù)據(jù):施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455復(fù)習、變量之間的兩種關(guān)系第3頁,課件共37頁,創(chuàng)作于2023年2月自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系。1、定義:
1):相關(guān)關(guān)系是一種不確定性關(guān)系;注對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的方法叫回歸分析。2):第4頁,課件共37頁,創(chuàng)作于2023年2月2、現(xiàn)實生活中存在著大量的相關(guān)關(guān)系。
如:人的身高與年齡;產(chǎn)品的成本與生產(chǎn)數(shù)量;商品的銷售額與廣告費;家庭的支出與收入。等等第5頁,課件共37頁,創(chuàng)作于2023年2月回歸分析的內(nèi)容與步驟:統(tǒng)計檢驗通過后,最后是利用回歸模型,根據(jù)自變量去估計、預(yù)測因變量。
回歸分析通過一個變量或一些變量的變化解釋另一變量的變化。
其主要內(nèi)容和步驟是:首先根據(jù)理論和對問題的分析判斷,將變量分為自變量和因變量;其次,設(shè)法找出合適的數(shù)學方程式(即回歸模型)描述變量間的關(guān)系;由于涉及到的變量具有不確定性,接著還要對回歸模型進行統(tǒng)計檢驗;第6頁,課件共37頁,創(chuàng)作于2023年2月最小二乘法:稱為樣本點的中心?;貧w直線過樣本點的中心第7頁,課件共37頁,創(chuàng)作于2023年2月3、對兩個變量進行的線性分析叫做線性回歸分析。2、回歸直線方程:2.相應(yīng)的直線叫做回歸直線。1、所求直線方程叫做回歸直---線方程;其中第8頁,課件共37頁,創(chuàng)作于2023年2月相關(guān)系數(shù)
1.計算公式2.相關(guān)系數(shù)的性質(zhì)(1)|r|≤1.(2)|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越?。畣栴}:達到怎樣程度,x、y線性相關(guān)呢?它們的相關(guān)程度怎樣呢?第9頁,課件共37頁,創(chuàng)作于2023年2月負相關(guān)正相關(guān)第10頁,課件共37頁,創(chuàng)作于2023年2月相關(guān)系數(shù)r>0正相關(guān);r<0負相關(guān).通常,r∈[-1,-0.75]--負相關(guān)很強;
r∈[0.75,1]—正相關(guān)很強;
r∈[-0.75,-0.3]--負相關(guān)一般;r∈[0.3,0.75]—正相關(guān)一般;r∈[-0.25,0.25]--相關(guān)性較弱;第11頁,課件共37頁,創(chuàng)作于2023年2月相關(guān)關(guān)系的測度
(相關(guān)系數(shù)取值及其意義)-1.0+1.00-0.5+0.5完全負相關(guān)無線性相關(guān)完全正相關(guān)負相關(guān)程度增加r正相關(guān)程度增加第12頁,課件共37頁,創(chuàng)作于2023年2月例1從某大學中隨機選取8名女大學生,其身高和體重數(shù)據(jù)如表1-1所示。編號12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學生的身高預(yù)報她的體重的回歸方程,并預(yù)報一名身高為172cm的女大學生的體重。案例1:女大學生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點圖:2、由散點圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。第13頁,課件共37頁,創(chuàng)作于2023年2月分析:由于問題中要求根據(jù)身高預(yù)報體重,因此選取身高為自變量,體重為因變量.2.回歸方程:1.散點圖;第14頁,課件共37頁,創(chuàng)作于2023年2月例1從某大學中隨機選取8名女大學生,其身高和體重數(shù)據(jù)如表1-1所示。編號12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學生的身高預(yù)報她的體重的回歸方程,并預(yù)報一名身高為172cm的女大學生的體重。案例1:女大學生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點圖:2、由散點圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。3、從散點圖還看到,樣本點散布在某一條直線的附近,而不是在一條直線上,所以不能用一次函數(shù)y=bx+a描述它們關(guān)系。探究:身高為172cm的女大學生的體重一定是60.316kg嗎?如果不是,你能解析一下原因嗎?第15頁,課件共37頁,創(chuàng)作于2023年2月我們可以用下面的線性回歸模型來表示:y=bx+a+e,其中a和b為模型的未知參數(shù),e稱為隨機誤差。第16頁,課件共37頁,創(chuàng)作于2023年2月思考:產(chǎn)生隨機誤差項e的原因是什么?隨機誤差e的來源(可以推廣到一般):1、忽略了其它因素的影響:影響身高y的因素不只是體重x,可能還包括遺傳基因、飲食習慣、生長環(huán)境等因素;2、用線性回歸模型近似真實模型所引起的誤差;3、身高y的觀測誤差。
以上三項誤差越小,說明我們的回歸模型的擬合效果越好。第17頁,課件共37頁,創(chuàng)作于2023年2月函數(shù)模型與回歸模型之間的差別函數(shù)模型:回歸模型:可以提供選擇模型的準則第18頁,課件共37頁,創(chuàng)作于2023年2月函數(shù)模型與回歸模型之間的差別函數(shù)模型:回歸模型:
線性回歸模型y=bx+a+e增加了隨機誤差項e,因變量y的值由自變量x和隨機誤差項e共同確定,即自變量x只能解釋部分y的變化。
在統(tǒng)計中,我們也把自變量x稱為解釋變量,因變量y稱為預(yù)報變量。所以,對于身高為172cm的女大學生,由回歸方程可以預(yù)報其體重為
第19頁,課件共37頁,創(chuàng)作于2023年2月思考:如何刻畫預(yù)報變量(體重)的變化?這個變化在多大程度上與解釋變量(身高)有關(guān)?在多大程度上與隨機誤差有關(guān)?
假設(shè)身高和隨機誤差的不同不會對體重產(chǎn)生任何影響,那么所有人的體重將相同。在體重不受任何變量影響的假設(shè)下,設(shè)8名女大學生的體重都是她們的平均值,即8個人的體重都為54.5kg。54.554.554.554.554.554.554.554.5體重/kg170155165175170157165165身高/cm87654321編號54.5kg在散點圖中,所有的點應(yīng)該落在同一條水平直線上,但是觀測到的數(shù)據(jù)并非如此。這就意味著預(yù)報變量(體重)的值受解釋變量(身高)或隨機誤差的影響。對回歸模型進行統(tǒng)計檢驗第20頁,課件共37頁,創(chuàng)作于2023年2月5943616454505748體重/kg170155165175170157165165身高/cm87654321編號
例如,編號為6的女大學生的體重并沒有落在水平直線上,她的體重為61kg。解釋變量(身高)和隨機誤差共同把這名學生的體重從54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解析變量和隨機誤差的組合效應(yīng)。
編號為3的女大學生的體重并也沒有落在水平直線上,她的體重為50kg。解析變量(身高)和隨機誤差共同把這名學生的體重從50kg“推”到了54.5kg,相差-4.5kg,這時解析變量和隨機誤差的組合效應(yīng)為-4.5kg。用這種方法可以對所有預(yù)報變量計算組合效應(yīng)。數(shù)學上,把每個效應(yīng)(觀測值減去總的平均值)的平方加起來,即用表示總的效應(yīng),稱為總偏差平方和。在例1中,總偏差平方和為354。第21頁,課件共37頁,創(chuàng)作于2023年2月5943616454505748體重/kg170155165175170157165165身高/cm87654321編號
那么,在這個總的效應(yīng)(總偏差平方和)中,有多少來自于解釋變量(身高)?有多少來自于隨機誤差?
假設(shè)隨機誤差對體重沒有影響,也就是說,體重僅受身高的影響,那么散點圖中所有的點將完全落在回歸直線上。但是,在圖中,數(shù)據(jù)點并沒有完全落在回歸直線上。這些點散布在回歸直線附近,所以一定是隨機誤差把這些點從回歸直線上“推”開了。在例1中,殘差平方和約為128.361。
因此,數(shù)據(jù)點和它在回歸直線上相應(yīng)位置的差異是隨機誤差的效應(yīng),稱為殘差。例如,編號為6的女大學生,計算隨機誤差的效應(yīng)(殘差)為:對每名女大學生計算這個差異,然后分別將所得的值平方后加起來,用數(shù)學符號稱為殘差平方和,它代表了隨機誤差的效應(yīng)。表示為:即,第22頁,課件共37頁,創(chuàng)作于2023年2月
由于解釋變量和隨機誤差的總效應(yīng)(總偏差平方和)為354,而隨機誤差的效應(yīng)為128.361,所以解析變量的效應(yīng)為解析變量和隨機誤差的總效應(yīng)(總偏差平方和)
=解析變量的效應(yīng)(回歸平方和)+隨機誤差的效應(yīng)(殘差平方和)354-128.361=225.639這個值稱為回歸平方和。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計算公式是第23頁,課件共37頁,創(chuàng)作于2023年2月樣本決定系數(shù)
(判定系數(shù)R2
)1.回歸平方和占總偏差平方和的比例反映回歸直線的擬合程度取值范圍在[0,1]之間
R21,說明回歸方程擬合的越好;R20,說明回歸方程擬合的越差判定系數(shù)等于相關(guān)系數(shù)的平方,即R2=(r)2第24頁,課件共37頁,創(chuàng)作于2023年2月顯然,R2的值越大,說明殘差平方和越小,也就是說模型擬合效果越好。在線性回歸模型中,R2表示解析變量對預(yù)報變量變化的貢獻率。
R2越接近1,表示回歸的效果越好(因為R2越接近1,表示解釋變量和預(yù)報變量的線性相關(guān)性越強)。
如果某組數(shù)據(jù)可能采取幾種不同回歸方程進行回歸分析,則可以通過比較R2的值來做出選擇,即選取R2較大的模型作為這組數(shù)據(jù)的模型??偟膩碚f:相關(guān)指數(shù)R2是度量模型擬合效果的一種指標。在線性模型中,它代表自變量刻畫預(yù)報變量的能力。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計算公式是第25頁,課件共37頁,創(chuàng)作于2023年2月1354總計0.36128.361殘差變量0.64225.639隨機誤差比例平方和來源表1-3
從表3-1中可以看出,解釋變量對總效應(yīng)約貢獻了64%,即R20.64,可以敘述為“身高解析了64%的體重變化”,而隨機誤差貢獻了剩余的36%。所以,身高對體重的效應(yīng)比隨機誤差的效應(yīng)大得多。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計算公式是第26頁,課件共37頁,創(chuàng)作于2023年2月表3-2列出了女大學生身高和體重的原始數(shù)據(jù)以及相應(yīng)的殘差數(shù)據(jù)。
在研究兩個變量間的關(guān)系時,首先要根據(jù)散點圖來粗略判斷它們是否線性相關(guān),是否可以用回歸模型來擬合數(shù)據(jù)。殘差分析與殘差圖的定義:
然后,我們可以通過殘差來判斷模型擬合的效果,判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù),這方面的分析工作稱為殘差分析。編號12345678身高/cm165165157170175165155170體重/kg4857505464614359殘差-6.3732.6272.419-4.6181.1376.627-2.8830.382
我們可以利用圖形來分析殘差特性,作圖時縱坐標為殘差,橫坐標可以選為樣本編號,或身高數(shù)據(jù),或體重估計值等,這樣作出的圖形稱為殘差圖。第27頁,課件共37頁,創(chuàng)作于2023年2月2023/7/10殘差圖的制作及作用。坐標縱軸為殘差變量,橫軸可以有不同的選擇;若模型選擇的正確,殘差圖中的點應(yīng)該分布在以橫軸為心的帶形區(qū)域;對于遠離橫軸的點,要特別注意。身高與體重殘差圖異常點
錯誤數(shù)據(jù)模型問題
幾點說明:第一個樣本點和第6個樣本點的殘差比較大,需要確認在采集過程中是否有人為的錯誤。如果數(shù)據(jù)采集有錯誤,就予以糾正,然后再重新利用線性回歸模型擬合數(shù)據(jù);如果數(shù)據(jù)采集沒有錯誤,則需要尋找其他的原因。另外,殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型計較合適,這樣的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報精度越高。第28頁,課件共37頁,創(chuàng)作于2023年2月例2、在一段時間內(nèi),某中商品的價格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對的回歸直線方程,并說明擬合效果的好壞。價格x1416182022需求量Y1210753解:第29頁,課件共37頁,創(chuàng)作于2023年2月練習、在一段時間內(nèi),某中商品的價格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對的回歸直線方程,并說明擬合效果的好壞。價格x1416182022需求量Y1210753列出殘差表為0.994因而,擬合效果較好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4第30頁,課件共37頁,創(chuàng)作于2023年2月例2:一只紅鈴蟲的產(chǎn)卵數(shù)y與溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù),試建立y與x之間的回歸方程解:1)作散點圖;從散點圖中可以看出產(chǎn)卵數(shù)和溫度之間的關(guān)系并不能用線性回歸模型來很好地近似。這些散點更像是集中在一條指數(shù)曲線或二次曲線的附近。第31頁,課件共37頁,創(chuàng)作于2023年2月解:令則z=bx+a,(a=lnc1,b=c2),列出變換后數(shù)據(jù)表并畫出x與z的散點圖x和z之間的關(guān)系可以用線性回歸模型來擬合x21232527293235z1.9462.3983.0453.1784.194.7455.784第32頁,課件共37頁,創(chuàng)作于2023年2月2)用y=c3x2+c4模型,令,則y=c3t+c4,列出變換后數(shù)據(jù)表并畫出t與y的散點圖散點并不集中在一條直線的附近,因此用線性回歸模型擬合他們的效果不是最好的。t44152962572984110241225y711212466115325第33頁,課件共37頁,創(chuàng)作于2023年2月殘差表編號1234567x21232527293235y711212466115325e(1)0.52-0.1671.76-9.1498.889-14.15332.928
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 可持續(xù)農(nóng)業(yè)發(fā)展
- 家居行業(yè)的前瞻策略
- 合同范本作廢文本
- 合同范本制訂優(yōu)
- 插花花藝師理論練習試卷附答案
- 入學申請書咋寫格式
- 單位工裝定制合同范本
- 加盟專屬管轄合同范例
- 農(nóng)村房屋新建申請書寫范文
- 打造精彩自我介紹
- 第15課《家鄉(xiāng)的糧食作物》 課件
- 膽囊結(jié)石伴膽囊炎的護理查房
- 人工智能在智能物流成本優(yōu)化中的應(yīng)用
- 多元智能教育培養(yǎng)學生全面發(fā)展的核心能力培訓課件
- 學習投入度測量工具
- 各種螺釘尺寸-標準螺釘尺寸表
- 高速通道施工方案
- 頸椎損傷的識別與處理
- 智能化工程施工重難點分析
- (完整版)建筑工程技術(shù)畢業(yè)論文
- 工業(yè)用烤箱安全操作規(guī)程范本
評論
0/150
提交評論