版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BISWorking
PapersNo
1088BigtechsandthecreditchannelofmonetarypolicybyFiorellaDeFiore,LeonardoGambacortaandCristina
ManeaMonetaryandEconomic
DepartmentApril2023JELclassification:E44,E51,E52,G21,
G23.Keywords:BigTechs,monetarypolicy,credit
frictions.BISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartment
of
the
Bank
for
International
Settlements,
and
from
time
to
time
by
othereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterest
and
are
technical
in
character.
The
views
expressed
in
them
are
those
of
theirauthorsandnotnecessarilytheviewsofthe
BIS.ThispublicationisavailableontheBISwebsite
().? BankforInternationalSettlements2023.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceis
stated.ISSN1020-0959
(print)ISSN1682-7678
(online)BigTechsandtheCreditChannelofMonetary
PolicyF.
De
Fiore? L.
Gambacorta? C.
Manea?§March9,
2023AbstractWedocumentsomestylizedfactsonbigtechcreditandrationalizethemthroughthelensofamodelwherebigtechsfacilitatematchingonthee-commerceplatformandextendloans.Thebigtechreinforcescreditrepaymentwiththethreatofexclusionfromtheplatform,whilebankcreditissecuredagainstcollateral.Ourmodelsuggeststhat:(i)ariseinbigtechs’matchingefficiencyincreasesthevalueforfirmsoftradingontheplatformandtheavailabilityofbigtechcredit;(ii)bigtechcreditmitigatestheinitialresponseofoutputtoamonetaryshock,whileincreasingitspersistence;(iii)theefficiencygainsgeneratedbybigtechsarelimitedbythedistortionaryfeescollectedfrom
users.JELclassification:E44,E51,E52,G21,
G23Keywords:BigTechs,monetarypolicy,credit
frictions?BankforInternationalSettlementsandCEPR.Email:
Fiorella.DeFiore@.?BankforInternationalSettlementsandCEPR.Email:
Leonardo.Gambacorta@.?BankforInternationalSettlements.Email:
Cristina.Manea@.§ThisresearchprojectwaspartiallycompletedwhileC.Maneawasworking
for
theresearchcenterof
the
DeutscheBundesbank.TheviewsexpressedinthispaperareourownandshouldnotbeinterpretedasreflectingtheviewsoftheBankforInternationalSettlements,theDeutscheBundesbank,ortheEurosystem.WethankK.Adam,F.
Alvarez,J.Gal′?,R.ReisandH.Uhligforusefuldiscussionswhiledevelopingtheanalyticalframeworkofthisproject,toF.SmetsandM.Bussi`erefordiscussingourpaperattheCEBRAandtheAnnualSNBMonetaryEconomicsConference,aswellasforusefulcommentstoJ.
Benchimol,F.Boissay,B.Bundick,P.Cavallino,K.Dogra,M.Gertler,A.Glover,M.Hoffmann,T.Holden,D.Lee,V.Lewis,M.Lombardi,
G.Lombardo,
Y.Ma,J.Matschke,L.Melosi,E.
Mertens,T.Mertens,E.Moench,M.Rottner,J.Sim,M.Spiegel,I.Vetlov,L.ZhengandseminarandconferenceparticipantsattheBankforInternationalSettlements,DeutscheBundesbank,CentralBankofIsrael’sVIMACROseminarseries,KansasCityFed,BSESummerForum,IFRMP,PadovaMacro,RAD,CEBRA,OsloMacroconference,ASSA2023,andTinbergenInstitute.WearegratefultoG.CornelliandA.Maurinforexcellentresearchassistance,andtoV.Shreetiforsharingdataonbigtechs’fees.121 IntroductionLargetechnologyfirmssuchasAlibaba,Amazon,FacebookorMercadoLibre(bigtechs)haverecentlyventuredinfinancialmarketsbyprovidingloanstovendorsontheire-commerceplatforms.Bigtechcredithasrapidlyexpandedovertherecentyears,reachingvolumesofUSD530billionin2019,upfromonlyaroundUSD11billionin2013.Thepaceofincreaseinbigtechcreditcanbeexpectedtoexceedthatofbankcreditinsomecountries.Forinstance,during2020-21,bigtechcreditinChinarecordedanaverageannualgrowthrateof37%,comparedto13%forbank
credit.Thesechangesinfinancialintermediationcanshapethetransmissionofmonetarypolicyinnotableways.Thebusinessmodelofbigtechsreliesonthecollectionanduseofvasttrovesofdataratherthancollateraltosolveagencyproblemsbetweenlendersandborrowers.Creditscoringgeneratedusingmachinelearningandbigdataareabletoidentifyfirms’creditworthinesswithmoreprecisionthantraditionalcreditbureauratings(Frostetal.(2020)).Moreover,thethreatofbeingbannedfromthee-commerceplatformorevenofhavingone’sreputationtarnishedservesasanextra-legalbuthighlyeffectivemeansofcontractenforcementforbigtechcompanies(Gambacorta,KhalilandParigi(2022)).Thecrucialroleofdatainthecreditscoringprocessandthethreatofexclusionfromthebigtechecosystemreducetheneedforfirmstopledgecollateralinloancontracts.Thisexplainswhybigtechcreditisuncorrelatedwithrealestatevalues,butitishighlycorrelatedwithfirm-specificcharacteristics,suchastransactionvolumesonthebigteche-commerceplatform(Gambacortaetal.(2022)).Astheshareofbigtechcreditrises,monetarypolicywillaffectcreditsupplylessviaassetprices(thetraditional”physicalcollateralchannel”`alaKiyotakiandMoore(1997)),andmoreviarepaymentincentivecompatibilityconstraintswithinBigTechs’ecosystems(thenovel”networkcollateralchannel”thatwe
highlight).Ourpaperaimstoshedsomelightontheeffectsofbigtechs’entryintofinanceonthemacroeconomyandonmonetarypolicytransmission.Wedevelopamodelthatcanreplicatetwokeyempiricalfactsaboutbigtechs.First,usingmacrodataforChinaandtheUS,andextendingpreviousevidencebasedonChinesemicrodata,weshowthatbigtechcreditdoesnotreacttochangesinassetpricesandlocaleconomicconditions,unlikebankcredit.Second,weuselocalprojectionstoshedlightontheimportanceofthephysicalcollateralchannelrelativetothenetworkcollateralchannelforthetransmissionofmonetarypolicy.Keydriversofthestrengthofthesechannels
isthesensitivityofcommercialpropertypricesande-commercesalestomonetarypolicy.
Weshowthatcommercialpropertypricesrespondmorestronglythane-commercesalestoamonetarypolicyshock,althoughless
persistently.Ourmodelisconsistentwiththisevidenceandcanbeusedtoevaluatehowtheadventofbigtechcreditwillimpactthemonetarypolicytransmission.Theanalysisfocusesonbusiness-to-business(B2B)transactions(i.e.transactionsbetweenfirms),whichaccountfor80%ofglobalonline
transactions.1Inourframework,abigtechplatformfacilitatesthesearchandmatchingbetweenintermediategoodsfirmsandfinalgoodsfirms,andextendsworkingcapitalloanstotheformer.2Intermediategoodsfirmsmayfinancetheirworkingcapitalwithbothsecuredbankcreditandbigtechcredit,butcannotcommittorepaytheirloans.Thecrucialdifferencebetweenbigtechcreditandbankcreditrelatestoborrowers’opportunitycostofdefault.Firmsthatdefaultonbankcreditlosetheircollateral(realestate).Incontrast,thosethatdefaultonbigtechcreditloseaccesstobigtechs’e-commerceplatform,andhencetheirfutureprofits.Anincentivecompatiblecontractthuslimitsthetotalamountofcredittothesumofphysicalandnetworkcollateral.Nominalwagesaresticky,andmonetarypolicyaffectstherealeconomy.Whensearchfrictionsinthegoodsmarketsandcreditfrictionsinthefinancialmarketsaresettozero,themodelcollapsestothebasicNewKeynesianmodelwithsticky
wages.3Weobtainthreesetsofresults.First,anexpansioninbigtechs,ascapturedbyanincreaseinmatchingefficiencyonthecommerceplatform,raisesthevalueforfirmsoftradingintheplatformandtheavailabilityofbigtechcredit.Thisinturnrelaxesfinancingconstraintsandincreasesfirms’production,drivingaggregateoutputclosertotheefficientlevel.Second,thereactionofcreditandoutputtoamonetarypolicyshockcruciallydependsonthesensitivityoffirms’opportunitycostofdefaultonbigtechcredit(thestreamoffutureprofitsfromoperatingonthebigtechplatform)comparedtothatofdefaultingonbankcredit(thevalueofphysicalcollateral).Inourbaseline1According
to
the
United
Nations
Conference
on
Trade
and
Development
(UNCTAD),
the
average
share
of
B2B
inglobal
e-commerce
sales
over
the
period
2017-19
was
equal
to
83.8%.2Bigtechs’businessmodelischaracterizedbyamutuallyreinforcingdata-network-activityfeedbackloopwhichhelpsincreasethespeedandaccuracywithwhichtheplatformisabletoconnectbuyersandsellers.Thehigherthematchingefficiency,themoreseamlessandconvenienttheplatformis,andthemorelikelyusersaretousetheplatformfortheirtransactions(Boissayetal.
(2021)).3Forsimplicity,stickywagesaretheonlysourceofnominalrigiditiesinthemodel.Apartfromrenderingmonetarypolicynon-neutral,stickywagesarenecessaryforcreditconstraintstoamplifytheimpactofmonetarypolicy
shocks.34calibration,theintroductionofbigtechcreditmitigatestheinitialresponsesofaggregatecredit
andoutputtoamonetaryshock,butincreasesthepersistenceoftheeffectofmonetarypolicyonthemacroeconomy.Third,bigtechs’macroeconomicefficiencygainsarelimitedbythedistortionarynatureofthefeescollectedfromtheir
users.Ourpapercontributestotheliteratureonthefinancialacceleratorwherephysicalcollateralplaysacrucialroleintheamplificationofmacroeconomicfluctuationsandthetransmissionofmonetarypolicy(e.g.GertlerandGilchrist(1994)).Ariseincollateralvaluesduringtheexpansionaryphaseofthebusinesscycletypicallyfuelsacreditboom,whiletheirsubsequentfallinacrisisweakensboththedemandandsupplyofcredit,leadingtoadeeperrecession.ThecollateralchannelwasarelevantdriveroftheGreatDepression(Bernanke(1983)),andofthemorerecentfinancialcrisis(MianandSufi(2011),Bahajetal.(2019),OttonelloandWinberry(2020)andIoannidouetal.(2022)).Ourpapercontributesbyanalysinghowbigtechs’useofbigdataforcreditscoringandofnetworkcollateralinsteadofphysicalcollateralaffectthelinkbetweenassetprices,creditandthebusiness
cycle.Inoursetup,bigtechcreditsupplyisultimatelyconstrainedbyfirms’expectedprofits.Ouranalysisthereforealsorelatestotheliteratureonthemacroeconomiceffectsofintangiblecollateral(Amable,ChatelainandRalf(2010),Nikolov(2012))andearnings-basedborrowingconstraints(Drechsel(2022),LianandMa
(2021)).Finally,ourpaperrelatestoarecentliteratureonfinancialinnovationandinclusionbyshowinghowariseinmatchingefficiencybetweenbuyersandsellersoncommercialplatformscanleadtoanoverallexpansionofcreditsupply.Theempiricalevidencesuggeststhatfintechandbigtechcreditaregrowingwherethecurrentfinancialsystemisnotmeetingdemandforfinancialservices(Bazarbash(2019),HaddadandHornuf(2019)).Bechetal.(2022)findthatcreatingadigitalpaymentfootprintenablessmallfirmstoaccesscreditfrombigtechcompanies,andthatthishasspillovereffectsfortheirabilitytoaccessbankcreditaswell.Frostetal.(2020)usedataforMercadoCredito,whichprovidescreditlinestosmallfirmsinArgentinaonthee-commerceplatformMercadoLibre.Theyfindthat,whenitcomestopredictinglossrates,creditscoringtechniquesbased
on
big
data
and
machine
learning
have
so
far
outperformed
credit
bureau
ratings.Thepaperproceedsasfollows.Section2describesthestylisedfactsonbigtechcredit.Section3
describesourtheoreticalframeworkwithaspecialfocusonthedualroleofthebigtech
firm5ascommerceplatformandfinancialintermediary.Section4describestheparametrizationof
themodel.Section5showsthesteady-stateequilibriumasafunctionofthematchingefficiencybetweensellersandbuyersonthecommerceplatform.Section6studiestheeffectsofbigtechcreditonthedynamicresponsestoamonetarypolicyshock.Section7
concludes.Stylisedfactsonbig
techsOverthelastdecade,bigtechplatformshaveexpandedtheiractivitygloballyandstartedventuringintocredit
provision.Expansionofbigtechcreditand
e-commerceBigtechcredithasrapidlyexpandedinthelastyearsbecomingmacroeconomicallyrelevantinChina,KenyaandIndonesia(Cornellietal.(2022)).TheexpansionhasbeenparticularlystrongduringtheCovid-19pandemic,duetotheincreaseine-commerceactivitythathasalsoincreasedthedemandforcredit.E-commercerevenueshaverisenfromanestimated$1.4trillionin2017to$2.4trillionin2020,whichamountsto2.7%ofglobaloutput(Figure1,left-handpanel).Recentestimatesindicatethat3.5billionindividualsglobally(about47%ofthepopulation)usede-commerceplatformsin2022.Chinaisthelargestmarket,followedbytheUnitedStates,Japan,theUnitedKingdomandGermany.Mostoftheactivityisbusiness-to-business(B2B)transactions(i.e.transactionsbetweenfirms),whichaccountfor80%ofglobalonlinetransactions(Figure1,right-hand
panel).Thefeestructureofbigtechsgeneratesaroundonethirdoftheirtotalrevenues(Boissayetal.(2021)).Thesefeescanbechargedfordifferentservices,includingplatformaccessfeesforthird-partymerchantsandconsumers,subscriptionfeesforpremiumservices,andadvertisingfeesforreachingawideraudience.E-commerceplatformfeesaretypicallydividedinafixedcomponentandavariableone.Thefixedfeescoveranumberofservicesprovidedbytheplatformforproductadvertisementandareoftennegligibleorabsentformerchants.Thevariablefeeisapercentageofthesalepricechargedbybigtechstothird-partymerchantsforusingtheirplatformstoreachcustomers.Forexample,Amazonchargesthird-partysellersareferralfee,whichrangesfrom6%to45%ofthesaleprice,dependingontheproductcategory.TableA1intheAppendixreportsthestructureofthee-commerceplatformfeesforaselectednumberofbigtechs.Theaveragevariableplatformfeeis
8.5%.Figure
1:
Upward
trend
in
e-commerce,
mostly
via
Big
Tech
platformsNotes:
Source:V.Alfonso,C.Boar,J.Frost,L.GambacortaandJ.Liu(2021):E-commerceinthepandemicandbeyond,BISBulletins,no36,January(leftpanel);UNCTADwithsharescorrespondingtoaveragescalculatedovertheperiod2017-19(right
panel)Bigtechs’rapidexpansionincreditprovisionmirrorstheevolutionoftheirrevenues.Dueto
theirlargeprofitsbigtechshaveasubstantialamountofliquiditythatcanbeusedtofinancelendingtofirmsandconsumers.Boissayetal.(2020)showthatbigtechfirmsaremoreprofitableandcapitalisedthanglobalsystemicallyimportantfinancialinstitutions(G-SIFIs)andhavealargeramountofassetsinliquidform.PriortotheCovidshock,theaverageearning-to-assetratioforbigtechswas24%,against4%forG-SIFIs.Thelargeramountofprofitswasalsoreflectedinahigherequity-to-totalassetratio(52%against8%)andcash-to-totalassetratio(11%and7%,respectively).2.2Bigtechcreditvsbank
creditBigtechcreditisnotcollateralisedandhasashortermaturitythanbankcredit.ForthecaseofChina,bigtechcredithasanaveragematurityoflessthanoneyearandistypicallyrenewedseveraltimes,asfarasthecreditapprovalremainsinplace(Gambacortaetal.(2022)).Whiletwothirdsofbigtechcredithasamaturityofoneyearorless,thissharedropsto43%forbankcredit.Similarcharacteristics
are
detected
for
Mercado
Libre
in
Mexico
(Frost
et
al.
(2020)).6Duetolackofcollateralbigtechcreditislesscorrelatedwithhousepricesthanbank
credit.Moreover,asfirmsoperateone-commerceplatforms,thedemandforbigtechcreditislesscorrelatedwithlocalbusinessconditions,wherethefirmisheadquartered.Gambacortaetal.(2022a)comparetheelasticityofdifferentcredittypestohousepricesandlocalGDP.Themainresult(reportedinFigure2)isthatbigtechcreditdoesnotcorrelatewithlocalbusinessconditionsandhousepriceswhencontrollingfordemandfactors,whileitreactsstronglytochangesinfirmcharacteristics,suchastransactionvolumesandnetworkscoresusedtocalculatefirmcreditratings.Bycontrast,bothsecuredandunsecuredbankcreditreactsignificantlytolocalhouseprices,whichincorporateusefulinformationontheenvironmentinwhichclientsoperateandontheir
creditworthiness.(a)Elasticitiestotransactions
(1)(b)Elasticitiestohouse
prices0.149***0.150.120.089***0.090.060.030.00Big
tech
credit Secured
bank
credit Big
tech
credit SecuredbankcreditFigure2:Creditelasticitytotransactions(left)andhouseprices
(right)Notes:Significancelevel:???p<0.01.Quarterlypaneldataforover2millionChineseSMEsfrom2017to2019withaccesstobothbankcreditandbigtechcreditfromthefinancialarmofAlibabaGroup(AntGroup).(1)Transactionvolumesincludesalesone-commerceplatformsbyonlinefirmsandrevenuesforsalesbyofflinefirmsoperatingwithinthebigtechecosystem.Theelasticityofbigtechcreditwithrespecttoe-commercesalesaloneis0.407***.Source:Gambacortaetal.
(2022)Weextendtheanalysisbycomputingunconditionalelasticitiesofbigtechcreditandbankcredittohousepricesandtoe-commercesales,respectively,basedonmacroeconomicdataforChinaandtheUnitedStates,overtheperiod2013-2020.OurresultsuncoverpatternssimilartothoseemergingfromChinesemicrodata(Table1).Inbothregions,bankcreditismorecorrelatedtohousepricesthanbigtechcredit,whereastheoppositeistruefore-commercesales.Thisevidencesuggeststhatawideruseofbigtechcreditmightdecreasethesignificanceofthecollateral
channel.0.05970.542***0.00.10.20.30.40.5Bigtechcredittohouse
priceChina0.56United
States0.18Bankcredittohouse
price1.40???1.02???Bigtechcredittoe-commerce
sales5.39???3.75???Bankcredittoe-commerce
sales0.39???0.25???Table1:Creditelasticitytohousepricesandtoe-commercesales(macro
data)Notes:
Unconditionalelasticities.Estimationperiod2013-2020.***Significanceatthe1%level.Sources:dataonbigtechs
are
from
Cornelli
et
al
(2022a),
on
e-commerce
sales
are
from
Statista
and
on
house
prices
are
from
the
BIS.ModelThemodelischaracterizedbythreemainbuildingblocks:creditfrictionsintheproductionsector,searchandmatchingalongtheproductionchain,andnominalrigiditiesintheformofsticky
wages.Theeconomyispopulatedby(1)alargenumberofidenticalhouseholdswhoconsume,investandwork,(2)intermediategoodsfirmswhichproduceusinglaborandcapital,(3)retailerswhichproducefinalgoodsusingintermediategoodsasinputs,(4)abigtechfirmwhichfacilitatestransactionsbetweenfirmsandretailers,andextendscredittotheformer,(5)bankswhichgivesecuredloanstofirms,(6)agovernmentwhichissuesrisk–freenominalbonds,and(7)acentralbankwhichsetsthenominalinterest
rate.Firmssellintermediategoodstoretailersviaabigtechcommerceplatformwherebuyersandsellersneedtosearchforandmatchwithoneanother.Intermediategoodsfirmsfinancetheirworkingcapitalinadvanceofsaleswithbothsecuredbankcreditandbigtech
credit.HouseholdsTheeconomyispopulatedbyalargenumberofidenticalinfinitely-livedhouseholds.Eachhouseholdismadeupofacontinuumofmembers,eachspecializedinadifferentlaborservice,andindexedbyj∈[0,1].Incomeispooledwithineachhousehold.AtypicalhouseholdchooseseachperiodhowmuchtoconsumeCtandhowmuchtoinvestinnominalrisk–freepublicbondsBtandequityEttomaximizeitsintertemporal
utility,E0Σ. .∞ 1?σt=0βt tC ?
11?
σ?
χ10tL
(j)1+φ1+
φ8dj∫ ΣΣsubjecttothesequenceofbudget
constraintst
thttet∫10PC+B+E
Q
≤ W
(t tj)L
(ht?1j)dj
+
B (1+
it?1tet)+ED+
Et?1etQ+
Υt(1)tfort=0,1,2...,takingemploymentchoicesL
(∫10j)and
labor
income W
(t tj)L(j)djasgiven.Individually,eachhouseholdhasnoinfluenceonnominalwageratesWt(j)setbyunions,
ortemploymentlevelsLt(j)determinedbyfirms.Ptisthepriceofafinalconsumptiongood,Qeis
thetunit
price
of
equity,
it
is
the
nominal
interest
rate
paid
at
t
+
1
on
public
bonds
bought
at
t,
De
istg pbt t tthedividendpaidonequity,Υ≡Υ+Υ+Υareaggregate(net)lump-sumtransfers
receivedbythehouseholds,whereΥgarelump-sumnettransfersbythegovernment,Υpare
lump-sumt tnetpay–outsbytheprivatesector(i.e.byintermediategoodsfirmsandretailers)
andΥbaretlump-sumnettransfersbythebigtechfirm.4Thehouseholdreceivesthewagesforalltypes
oflaborservicesasbankdepositsatthebeginningofperiodtandusesthemwithintheperiodtobuyfinalconsumptiongoods.ThemaximizationproblemissubjecttostandardsolvencyconstraintsrulingoutPonzischemesonbondsand
equity0,TBT≥
0, lim
E0T
→∞0,TTE
Qh eTPT PTlim
E0.Λ Σ .Λ ΣT
→∞≥
0,(2)where
Λ ≡
βTC?σT0,T C?σt.Households’optimalityconditionsconcerntheoptimalintertemporal
alloca-tionofconsumptiondescribedby
theEulerequations,1
=
E
Λt t,t+1?1t+1t,Π (1+i)
,(3)(4)e et t,Q
=
D
+
E
Λt t,t+1Π Q?1 et+1
t+1,,togetherwiththesequenceofbudgetconstraintsin(1)
fort=0,1,2,...,and
thetransversalityconditionsin(2),where
Λ
t+1t,t+1 C?σttC?σ≡
β istherealstochasticdiscountfactor,andΠ
≡
Pt
Pt?1is
the(gross)inflationratebetweent?1and
t.Thewagesettingproblemandnominalwagerigiditiesarestandard(seeforinstanceGal′?(2015),Chapter6):eachperiodworkersspecializedinagiventypeoflabor(ortheunionrepresentingthem)setwagessubjecttotheCalvo-typenominalrigidities.Specifically,workersspecialisedinany
given4Equityinvestmentisusedtofinancecapitalintheintermediategoodssector.Fortractability,capitalentersproductionrightaway(seedetailsinSection3.3.2),andhence,dividendsarepaidinthesameperiodwhentheequityinvestmentis
made.9labortypecanresettheirnominalwageonlywithprobablity1?θweachperiod,independently
ofthetimeelapsedsincetheylastadjustedtheirwage.Equivalently,eachperiodthenominalwageforworkersofanygiventyperemainsunchangedwithprobabilityθw.Inthisenvironment,thewagedynamicsaredescribeduptoafirst-orderlog-linearapproximation
bywttwt+1^π =
βE
{π }?
λwμtw(5)wtwwhere
π iswageinflationrate,λ
≡(1?θw
)(1?βθw
)θw
(1+?wφ)w,
with
? theelasticityofsubstitution
amonglabortypesindexedbyj,and
μ^twtw w≡μ
?
μ denotesthedeviationsoftheeconomy’s(lo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GGFG-PAB-Exatecan-TFA-生命科學(xué)試劑-MCE-7805
- 2025年度私教健身中心教練團(tuán)隊(duì)合作協(xié)議
- 2025年度水產(chǎn)養(yǎng)殖技術(shù)支持租地合同
- 二零二五年度私人酒店健身教練用工協(xié)議
- 材料采購(gòu)合同
- 食堂操作間衛(wèi)生與消毒措施
- 河道清淤施工方案6篇
- 個(gè)人不服勞動(dòng)合同糾紛仲裁起訴狀范本
- 上海簡(jiǎn)易離婚合同模板
- 上海市商品住宅銷(xiāo)售合同模板
- 貴州省工傷待遇申請(qǐng)表(綜合柜員)
- 籍貫對(duì)照表完整版
- 畢業(yè)生就業(yè)推薦表word模板
- a320飛機(jī)剎車(chē)系統(tǒng)原理及故障分析
- GB 5009.228-2016食品安全國(guó)家標(biāo)準(zhǔn)食品中揮發(fā)性鹽基氮的測(cè)定
- 并聯(lián)電容器課件
- 彼得圣吉:第五項(xiàng)修煉課件
- 色素性皮膚病
- 《社會(huì)主義市場(chǎng)經(jīng)濟(jì)理論(第三版)》第二章社會(huì)主義市場(chǎng)經(jīng)濟(jì)改革論
- 學(xué)校預(yù)算管理內(nèi)部控制制度
- anthone溫控儀說(shuō)明書(shū)LU920
評(píng)論
0/150
提交評(píng)論