復數與拉氏變換課件_第1頁
復數與拉氏變換課件_第2頁
復數與拉氏變換課件_第3頁
復數與拉氏變換課件_第4頁
復數與拉氏變換課件_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ejx=cos

x+jsin

x

(此時z的模r=1)其中r=|z|是z的模,q

=arg

z是z的輻角.復數及其指數形式

復數z可以表示為Z=r(cosq+jsinq

)=rejq

,歐拉公式z=x+jy三角函數與復變量指數函數之間的聯系因為ejx

=cos

x+jsinx,

e-jx=cos

x-jsinx,所以

ejx+e-jx=2cosx,

ex-e-jx=2jsinx.

因此復變量指數函數的性質特殊地,有ex+jy

=

exej

y

=ex(cos

yjsin

y).)(21cosjxjxeex-+=,

)(21sinjxjxeejx--=.

歐拉公式復數項級數

設有復數項級數∑(univn),其中un,

vn(n=1,2,3,

)為實常數或實函數.

如果實部所成的級數∑un收斂于和u,并且虛部所成的級數∑vn收斂于和v,就說復數項級數收斂且和為u+iv.

如果級∑(univn)的各項的模所構成的級數∑|univn|收斂,則稱級數∑(univn)絕對收斂.絕對收斂復變量指數函數

考察復數項級數可以證明此級數在復平面上是絕對收斂的,在x軸上它表示指數函數ex,在復平面上我們用它來定義復變量指數函數,記為ez

.即歐拉公式

當x=0時,z=iy

,

=cos

y+jsin

y.于是這就是歐拉公式.把y換成x得eix=cos

x+jsin

x,復變量指數函數AppendixLesson-LaplaceTransformsLaplace,

Pierre

(1749-1827)Sources: http://scienceworld./biography/Laplace.html

http://mathworld./LaplaceTransform.htmlFrenchphysicistandmathematicianwhoputthefinalcapstoneonmathematicalastronomybysummarizingandextendingtheworkofhispredecessorsinhisfivevolumeMécaniqueCéleste(CelestialMechanics)(1799-1825).ThisworkwasimportantbecauseittranslatedthegeometricalstudyofmechanicsusedbyNewtontoonebasedoncalculus,knownasphysicalmechanics.Laplacealsosystematizedandelaboratedprobabilitytheoryin"Essai

Philosophique

surlesProbabilités"(PhilosophicalEssayonProbability,1814).HewasthefirsttopublishthevalueoftheGaussianintegral,.HestudiedtheLaplacetransform,althoughHeavisidedevelopedthetechniquesfully.Heproposedthatthesolarsystemhadformedfromarotatingsolarnebulawithringsbreakingoffandformingtheplanets.HediscussedthistheoryinExpositiondesystèmedumonde(1796).Hepointedoutthatsoundtravelsadiabatically,accountingforNewton'stoosmallvalue.Laplaceformulatedthemathematicaltheoryofinterparticulateforceswhichcouldbeappliedtomechanical,thermal,andopticalphenomena.Thistheorywasreplacedinthe1820s,butitsemphasisonaunifiedphysicalviewwasimportant.WithLavoisier,whosecalorictheoryhesubscribedto,hedeterminedspecificheatsformanysubstancesusingacalorimeterofhisowndesign.LaplaceborrowedthepotentialconceptfromLagrange,butbroughtittonewheights.HeinventedgravitationalpotentialandshoweditobeyedLaplace'sequationinemptyspace.Laplacebelievedtheuniversetobecompletelydeterministic.TheLaplaceTransformofafunction,f(t),isdefinedas;WhatistheLaplaceTransform?Letf(t)beagivenfunctionthatisdefinedforallt0.Wecantransformf(t)intoanewfunction,F(s),via:WhatistheInverseLaplaceTransform?LetF(s)beaLaplacetransformofafunctionf(t).Wecangetf(t)byinverse

LaplaceTransform,via:….andwecantransformitbacktoo!TheInverseLaplaceTransformisdefinedbyTheLaplaceTransformTransformPairs:

f(t)F(s)TheLaplaceTransformTransformPairs:

f(t)F(s)Yes!TheLaplaceTransformTimeDifferentiation:Wecanextendtheprevioustoshow;Whythetransform?Amethodtosolvedifferentialequationsandcorrespondinginitialandboundaryvalueproblems,particularlyusefulwhendrivingforcesarediscontinuous,impulsive,oracomplicatedperiodic/aperiodicfunction.Transformthesubsidiaryequation’ssolutiontoobtainthesolutionofthegivenproblemGiventhehardproblem!Convertitintothesubsidiaryequation(SimpleProblem!)Solvethesubsidiaryequation(Purelyalgebraic!)Animportantpoint:Theaboveisastatementthatf(t)andF(s)aretransformpairs.Whatthismeansisthatforeachf(t)thereisauniqueF(s)andforeachF(s)thereisauniquef(t).IfwecanrememberthePairrelationshipsbetweenapproximately10oftheLaplacetransformpairswecangoalongway.TheLaplaceTransformBuildingtransformpairs:

Atransform

pairTheLaplaceTransformBuildingtransformpairs:u=tdv=e-stdtAtransformpairTheLaplaceTransformBuildingtransformpairs:AtransformpairTheLaplaceTransformTimeShiftTheLaplaceTransformFrequencyShiftTheLaplaceTransformExample:UsingFrequencyShiftFindtheL[e-atcos(wt)]Inthiscase,f(t)=cos(wt)so,TheLaplaceTransformTimeIntegration:Thepropertyis:TheLaplaceTransformTimeIntegration:MakingthesesubstitutionsandcarryingoutTheintegrationshowsthatTheLaplaceTransformTimeDifferentiation:IftheL[f(t)]=F(s),wewanttoshow:Integratebyparts:TheLaplaceTransformTimeDifferentiation:Makingtheprevioussubstitutionsgives,Sowehaveshown:TheLaplaceTransformFinalValueTheorem:Ifthefunctionf(t)anditsfirstderivativeareLaplacetransformableandf(t)hastheLaplacetransformF(s),andtheexists,thenAgain,theutilityofthistheoremliesinnothavingtotaketheinverseofF(s)inordertofindoutthefinalvalueoff(t)inthetimedomain.Thisisparticularlyusefulincircuitsandsystems.FinalValueTheoremTheLaplaceTransformFinalValueTheorem:Example:Given:Find.TheLaplaceTransformInitialValueTheorem:Ifthefunctionf(t)anditsfirstderivativeareLaplacetransformableandf(t)HastheLaplacetransformF(s),andtheexists,thenTheutilityofthistheoremliesinnothavingtotaketheinverseofF(s)inordertofindouttheinitialconditioninthetimedomain.Thisisparticularlyusefulincircuitsandsystems.InitialValueTheoremTheLaplaceTransformInitialValueTheorem:Example:Given;Findf(0)PartialFractionsExample#1PartialFractionsExample#2PartialFractionsExample#3LaplaceTransformPropertiesLinearity

Timeshifting

Frequencyshifting

Differentiation

intimeDifferentiationinTimePropertyLaplaceTransformPropertiesDifferentiationinfrequency

IntegrationintimeExample:f(t)=d(t)IntegrationinfrequencyLaplaceTransformPropertiesScalingintime/frequencyUnderintegration,ConvolutionintimeConvolutioninfrequencytf(t)2-2tf(2t)1-1Areareducedbyfactor2ExampleComputey(t)=eatu(t)*ebtu(t),wherea

bIfa=b,thenwewouldhaveresonanceWhatformwouldtheresonantsolutiontake?LinearDifferentialEquationsUsingdifferentiationintimeproperty

wecansolvedifferen

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論