平行線的判定與性質(zhì)拔高習題課課件_第1頁
平行線的判定與性質(zhì)拔高習題課課件_第2頁
平行線的判定與性質(zhì)拔高習題課課件_第3頁
平行線的判定與性質(zhì)拔高習題課課件_第4頁
平行線的判定與性質(zhì)拔高習題課課件_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

平行線的性質(zhì)與判定的綜合運用平行線的性質(zhì)與判定的綜合運用兩直線平行{1.同位角相等2.內(nèi)錯角相等3.同旁內(nèi)角互補性質(zhì)判定1.由_________得到___________的結(jié)論是平行線的判定;請注意:2.由____________得到______________的結(jié)論是平行線的性質(zhì).用途:用途:角的關(guān)系兩直線平行說明直線平行兩直線平行

角相等或互補說明角相等或互補兩直線平行{1.同位角相等2.內(nèi)錯角相等3.同旁內(nèi)角互補性質(zhì)例1:如圖所示:AD∥BC,∠A=∠C,試說明AB∥DC.AEDFBC解:∵AD//BC(已知)∴∠A=∠ABF(兩直線平行,內(nèi)錯角相等)又∵∠A=∠C(已知)∴∠ABF=∠C(等量代換)∴AB∥DC(同位角相等,兩直線平行)例1:如圖所示:AD∥BC,∠A=∠C,試說明AB∥DC.A思考1:如圖所示:AD∥BC,∠A=∠C,試說明AB∥DC.AD∥BC.AB∥DC,解:∵AB//DC(已知)∴∠C=∠ABF(兩直線平行,同位角相等)又∵∠A=∠C(已知)∴∠ABF=∠A(等量代換)∴AD∥BC(內(nèi)錯角相等,兩直線平行)AEDFBC思考1:如圖所示:AD∥BC,∠A=∠C,AD∥BC.AB∥解:∴∠2=∠3(等量代換)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代換)∴DF∥AC(內(nèi)錯角相等,兩直線平行)思考2:如圖,點E為DF上的點,點B為AC上的點,∠1=∠2,∠C=∠D,求證:DF∥AC321DEFABC∵∠1=∠2(已知)∠1=∠3(對頂角相等)∴BD∥CE(同位角相等,兩直線平行)∴∠C=∠ABD(兩直線平行,同位角相等)解:∴∠2=∠3(等量代換)又∵∠C=∠D(已知)∴∠解:∴∠2=∠3(等量代換)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代換)∴DF∥AC(內(nèi)錯角相等,兩直線平行)思考3:如圖,點B、E分別在AC、DF上,BD、CE均與AF相交,∠1=∠2,∠C=∠D,試問:∠A與∠F相等嗎?請說出你的理由。321DEFABC∵∠1=∠2(已知)∠1=∠3(對頂角相等)∴BD∥CE(同位角相等,兩直線平行)∴∠C=∠ABD(兩直線平行,同位角相等)∴∠A=∠F(兩直線平行,內(nèi)錯角相等)解:∴∠2=∠3(等量代換)又∵∠C=∠D(已知)∴∠解:又∵∠C=∠D(已知)∴∠D=∠ABD(兩直線平行,內(nèi)錯角相等)∴BD∥CE(同位角相等,兩直線平行)思考4:如圖,已知∠A=∠F,∠C=∠D,求證:BD//CE.321DEFABC∴∠C=∠ABD(等量代換)∵∠A=∠F(已知)∴DF∥AC(內(nèi)錯角相等,兩直線平行)解:又∵∠C=∠D(已知)∴∠D=∠ABD∴BD∥C例2:如圖所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求證:∠1+∠2=90°.12ABCDEE例2:如圖所示,已知:AE平分∠BAC,CE平分∠ACD,且思考一:

已知AB∥CD,GM,HM分別平分∠FGB,∠EHD,試判斷GM與HM是否垂直?MGHFEDCBA思考一:已知AB∥CD,GM,HM分別平分∠FGB,∠EMGHFEDCBA思考2:若已知GM,HM分別平分∠FGB,∠EHD,GM⊥HM,試判斷AB與CD是否平行?MGHFEDCBA思考2:若已知GM,HM分別平分∠FG思考3

:已知AB∥CD,GP,HQ分別平分∠EGB,∠EHD,判斷GP與HQ是否平行?BACDFEHGPQ思考3:已知AB∥CD,GP,HQ分別平分∠EGB,∠E思考4:已知AB∥CD,GP,HQ分別平分∠AGF,∠EHD,判斷GP與HQ是否平行?BACDFEHGPQ思考4:已知AB∥CD,GP,HQ分別平分∠AGF,∠EH思考5:已知,如圖,BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,

求證:1)ABCD

2)BEDG

3)EDGD

∠1+∠2=90°132465EABCGFD思考5:已知,如圖,BE平分∠ABD,DE平分∠BDC,D解:∴∠BAD=∠ADC(兩直線平行,內(nèi)錯角相等)又∵∠1=∠2(已知)∴∠E=∠F(兩直線平行,內(nèi)錯角相等)∵AB∥CD(已知)∴AF∥DE(內(nèi)錯角相等,兩直線平行)∴∠3=∠4(等式的性質(zhì))例3:如圖,已知AB∥CD,

∠1=∠2,求證∠E=∠F.F1EDBA2C)(34解:∴∠BAD=∠ADC又∵∠1=∠2(已知)∴∠E=思考1:如圖,已知∠E=∠F,

∠1=∠2,求證AB∥CD.F1EDBA2C)(34思考1:如圖,已知∠E=∠F,∠1=∠2,F1EDBA2C思考2:如圖,已知AB∥CD,

∠E=∠F,求證∠1=∠2.F1EDBA2C)(34思考2:如圖,已知AB∥CD,∠E=∠F,F1EDBA2C思考3:如圖,已知AB∥CD,AF∥DE,

求證∠1=∠2.F1EDBA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論