版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Economics205,Fall2010
QuizI
August27,2010
Instructions.Trytoanswerall3problems.(Readallofthequestionsnow
andstartontheonesthatseemeasiest).Makeyouranswersascompleteand
rigorousaspossible.Wlienyoucomputeaderivativesay“Thisstepfollowsfrom
thechainrule^^or“Becausethederivativeofasumisthesumofthederivatives
...Whenyoutakealimit,invokethenecessaryresults(orgiveadirectproof
withes).
Informalandintuitiveargumentsarebetterthannothing.
1.Let/beadifferentiablefunction.Calculatethederivativeofthefunction
hdefinedineachoftheproblemsbelow.Ifyouneedadditionalassump-
tions,makethemexplicit:
(a)h(x)=log/(x2)
(b)h(x)=/(logx)
(c)/i(x)=elog工
2.Calculatethelimitsindicatedbelow.
(a)lim7Too
(b)lim①T5
(c)lima._>0+xlogx.
3.Letf:[0.1]—>R.
(a)Provethatif
|a-41/2>(a)-/(b)|foralla,6€[0,1],(1)
thenfiscontinuouson(0,1).
(b)Giveanexampleofanon-constantfunctionfthatsatisfies(??).
[Provethatyourexamplesatisfiesthecondition.]
1
Economics205.Fall2010
QuizI,PossibleAnswers
August27,2010
Comments.Scoresoutof100.Range:46-96.Average:81,Median:83.
Allocation:40/40/30.
Firstquestion:OK,butsomepeopledidnotnoterangeofvalidity.Third
question:Thisiswheremostpeoplelostpoints.
Minimal(butpositive!)deductionfornotprovidingjustification.Deduc-
tionsfornotexplainingyouranswerswillincreaseonfutureassessments.
1.Let/beadifferentiablefunction.Calculatethederivativeofthefunction
hdefinedineachoftheproblemsbelow.Ifyouneedadditionalassump-
tions,makethemexplicit:
(a)h(x)=log/(a;2).)bytheChainRule(twice).You
canonlydothiscomputationwhen/(T2)>0.
(b)h(x)=/(logT).九'(①)=/'(log①)//bythechainruleandtherule
fordifferentiatingloga?.Needx>0forhtobedefined.
logx
(c)h(x)=e=xysoh!(x)=1
2.Calculatethelimitsindicatedbelow.
i;m—n
(a)UIURTOO3rl3+6-u
Givene>0,letAT=1/e
n2—1n2—1
0<―-<—<6.
3n3+6n3
(b)“ru;工二十5言=2.3.
(Limitofcontinuousfunctionratioofpolynomialswithnonzero
denominator.Sobycontinuity,justevaluate.)
lima._+0+xlogx=lim£ToiCanuseL'Hopital'sRuleonlast
expressiontoobtain:
limlim等1而4=0
Z
6T0+CT0+l/xX->0+—1/X
3.Letf:[0?1]tR.
1
(a)Provethatif
1/2
\a-b\>|/(Q)-/(d)|foralla,be[0,1],(1)
thenfiscontinuouson(0,1).
Theinequalitysaysthat-f(a)-f(b)-is“sandwiched”betweenthe
constantfunctionequaltozeroandthefunctiong(x)=\a—①?
Sincegiscontinuousata(acceptedwisdom),linib->a1/(。)一/(6)|=
0.Thisiswhatweneededtoshow.
(b)Giveanexampleofanon-constantfunctionfthatsatisfies(1).
[Provethatyourexamplesatisfiesthecondition.]
Therearemanypossibilities.f(x)=xworksbecause\a—>
\a—b\foralla,6€[0,1].(Toprovethisassertionyoucannotethat
theright-handsideoftheinequalityisnon-negative,sotheinequality
isequivalentto
|a-6|>|a-6|2
(squarebothsides).Thisinequalityholdswhena=bandotherwise
isequivalentto1>\a-b|,whichwillholdwhena,b£[0.1].
2
Economics205.Fall2010:QuizII
September3.2010
Instructions.Trytoanswerallthreeproblems.(Readallofthequestions
nowandstartontheonesthatseemeasiest.)Thinkbeforeyouwrite.You
shouldbeabletodoeverythingwithoutmuchtediouscomputation.Makeyour
answersascompleteandrigorousaspossible:givereasonsforyourcomputations
andproveyourassertions.Informalandintuitiveargumentsarebetterthan
nothing.
1.Decidewhethereachofthestatementsbelowistrue.Ifthestatementis
true,thenproveit.Ifthestatementisfalse,thengiveacounterexample.
Ineachpart/:R—>IR,istwicecontinuouslydifferentiableandstrictly
concave.
(a)x=1cannotsolveminf(x)subjecttoxe[0,1].
(b)If⑴=0,then1isalocalmaximumoff.
(c)Thereexistsnofunctionf(satisfyingtheassumptionsoftheprob-
lem)suchthat/(0)=/(I)=f⑵.
-ioo-
2.LetA=001.
_010_
(a)FindtheeigenvaluesofA.
(b)Findamaximalcardinalitysetoflinearlyindependent,eigenvectors
forA.Associatetheseeigenvectorswiththeeigenvaluesyoufound
inParta.
(c)IsAdiagonalizable?
(d)Ifthematrixisdiagonalizable,findamatrixPsuchthatA=
PDPT,whereDisdiagonal.
(e)StatewhetherthequadraticformQ(N)=xlAxispositive(semi-)
definite,negative(semi-)definite,orindefinite.
3.Letw=(1,4,0)andv=(1,0,2).
(a)Findtheequationofthelinethatpassesthroughthepointwinthe
directionv.
(b)Findtheequationofahyperplanethatcontainsthepointwand
containsthelineyoufoundinpart(a).
(c)Findanequationofalinethatiscontainedinthehyperplanethat
youfoundinpart(b),containsthepointw,andisorthogonaltothe
lineyoufoundinpart(a).
1
Economics205,Fall2010:QuizII,PossibleAnswers
September3.2010
Comments.100pointspossible,range39-99,median82,mean76.
1.Somepeopledidnotknowthedefinitionofconcavity.Apparentlysome
peopleclaimedthatf<0impliesthatfismonotonicallyincreasing.
Nope(try—x2).Concavefunctionstypicallyincreaseandthendecrease
(graphslooklikeanupside-down"U."Thethirdpartyisprobablyeasiest
ifyonjustusethedefinition.
2.Rememberthatwhenyouhaveane-valueformultiplicitykyouneedto
findklinearityindependentassociatede-vectorstodiagonalize.
3.Answerstopart(c)werenotgood,apparentlyduetotimepressure.
1.(a)False.Pickafunctionthatisstrictlyconcaveanddecreasing,for
examplef(x)=1—x2.On[0,1]thisfunctionattainsitsunique
minimumat①=1.
(b)True.Infact,itwillbeaglobalmaximum.
(c)True.Bystrictconcavity,/(I)>.5/(0)+.5/(1).
2.(a)Eigenvaluesare—1and1,themultiplicityoftheeigenvalue1istwo.
(b)Twolinearlyindependenteigenvectorsassociatedwiththeeigenvalue
1are:(1,0,0)and(0,1,1).Aneigenvectorassociatedwiththeeigen-
value—1is:(0,1,—1).
(c)Aisdiagonalizable(symmetric).
(d)OnepossiblePisthematrixwithcolumnsequaltonormalizedeigen-
'100-
vectors:P—°尖壺.Inthiscase,P-1=Pl=Pand,
100
ifD=010,thenA=PDP-1.
00-1
(e)QuadraticFormisIndefiniteSinceithaspositiveandnegativeeigen-
values.
3.Letw=(1,4,0)andv=(1,0,2).
(a)Findtheequationofthelinethatpassesthroughthepointwinthe
directionv.
Point:w=(1,4,0);Direction:v=(1,0,2).Equation:w+tv.
(b)Findtheequationofahyperplanethatcontainsthepointwand
containsthelineyoufoundinparta.
1
Point:w;Orthogonaldirection:Anythingorthogonaltov.Forex-
ample:u=(0,1,0).
Equation:"?(①一僅)=0or①2=4.Therearelots(infinitelymany)
ofalternativesolutions.
(c)Findanequationofalinethatiscontainedinthehyperplanethat
youfoundinpartb,containsthepointw,andisorthogonaltothe
lineyoufoundinparta.
Point:w;Direction:mustbeorthogonaltobothvandu.Thatis,
ifthedirectionisp=(P1,P2,P3),thenp?v=0(thisguarantees
thatthelineisorthogonaltothelineinparta)andp-u=0(this
guaranteesthatthelineisintheplanedescribedinpartb).Hence
pi+2P3=0andp?=0,soadirectionisp=(2,0,—1)andequation
forlineis:
w+tp
2
Economics205,Fall2010
QuizIII
September10,2010
Instructions.Ti*ytoanswerallpartsofbothquestions.Makeyouranswers
ascompleteandrigorousaspossible.Informalandintuitiveargumentsare
betterthannothing,butpleaseprovidecompletejustification.
1.LetK={(x^y):x2+y2<4}.
(a)ProvethatKisconvex.
(b)Showthat(3,1)隼K.
(c)FindtheequationofahyperplanethatseparatesKfrom(3,1).
(d)Showthat(%(),如)=(0,2)satisfiesx2-\-y2=4.
(e)Isitpossibletosolvetheequationx24-7/2=4foryasadifferentiable
functionofxfor(rr.y)near(0,2).Ifso.writey=Y(x)andfind
y'(o).
(f)Isitpossibletosolvetheequationx2-\-y2=4forxasadifferentiable
functionofyfor(rr,y)near(0.2).Ifso,writex=X(y)andfind
X").
2.Amonopolyfirmcaninfluencedemandbyadvertising.Ifthefirmbuys
aunitsofadvertising,itcansellqunitsatthepriceP(a,q)=a(15—q).
Thepriceofaunitsofadvertisingisaa2dollars.Itcoststhemonopolist
0q2toproducequnits.
(a)Writetheprofitfunctionofthefirm.
(b)Showthatwhena=5and3=2.5thesolutiontothemonopolist
profitmaximizationproblemistoseta=5andq=5.
(c)Isitpossibletodescribehowtheprofitmaximizingvaluesofqand
achangeasaand/3change(nearthepointinpart(b))?Ifso,
computethederivativesofqandaasfunctionsofaandBnear
=(5,).
(d)Ifaincreasesto5.01and0decreasesto2.48willthemonopolisfs
outputincrease?
1
Economics205,Fall2010
QuizIIIPossibleAnswers
September10,2009
Comments.Range:50-98,Median:73,Mean:75.Larrysaysthatmostdid
wellonthefirstquestion.Hesaidthatsomepeopleconfusedthedefinition
ofconvexityofasetwithconvexityofafunction.Thedefinitionsarerelated,
ofcourse,butdifferent.Hereportedthattherewereproblemsfiguringout
whatequationsneededtobedifferentiatedtoanswerthelastpartsofquestion
two.Istillmaintainthatitiseasierandmoreintuitivetodotheseproblems
directlyratherthanattemptingtoforcethingsintotheimplicitfunctiontheorem
formula.Thesecondquestionillustratesanimportanttechnique.
1.LetK={(x,y):x2+y2<4}.
(a)ProvethatKisconvex.
Oneanswer:h(z)=/jsaconvexfunction(secondderivativeposi-
tive),so
(Xz+(1-A)?)2<A/+(i_A)(?)2.
Itfollowsthatif(z,y),(a/,yf)€K,and(〃,v)=(Xr+(1—X)xf,Xy+
(1-W),then
u2<Xx2+(1—A)(xz)2,
v2<AT/2-F(1-A)(y)2,
andhenceu2+v2<4.
(b)Showthat(3,1)隹K.
9+1>4
(c)FindtheequationofahyperplanethatseparatesKfrom(3,1).
Theproofoftheseparatingliyperplanetheoremusethedirection
ofthelinethatconnects(3.1)tothepointinKclosestto(3,1).
Thispointturnsouttobe(x^y)=v\4(3.1).Sothehyperplane
wouldhavenormalinthedirection(3,1)—(①,g)andpassthrough
apointonthesegmentconnecting(①,g)to(3,1).Asimplerto
describeseparatinghypcrplaneisi=2.5.EverypointinKisin
{(x^y)\x<2.5},while3>2.5.
(d)Showthat(%yo)=(0,2)satisfiesx2+y2=4.
0+4=4.
1
(e)Isitpossibletosolvetheequationx2-^-y2=4for?/asadifferentiable
functionofxfor(x,y)near(0,2).Ifso.writey=Y(x)andfind
⑵.
Itispossiblebecauseatthispointthederivativeofx2+y2with
respecttoyisnotzero.Yf(2)=0.
(f)Isitpossibletosolvetheequationx2-\-y2=4forxasadifferentiable
functionofyfor(x,y)near(0.2).Ifso,writex=andfind
X").
Itisnotpossiblebecauseatthispointthederivativeofx2+y2with
respecttoxiszero.
2.Amonopolyfirmcaninfluencedemandbyadvertising.Ifthefirmbuys
aunitsofadvertising,itcansellqunitsatthepriceF(a,q)=a(15—q).
Thepriceofaunitsofadvertisingisaa2dollars.Itcoststhemonopolist
(3q2toproducequnits.
(a)Writetheprofitfunctionofthefirm.
P(a,q)q—aa?—.
(b)Showthatwhena=5and8=.5thesolutiontothemonopolist's
profitmaximizationproblemistoseta=10andq=5.
First-orderconditions:
a(15—2q)—2/3q=0and(15—q)q—2aa=0.
Youcancheck(bydifferentiatingagain)thattheobjectivefunction
isstrictlyconcave,sofirst-orderconditionscharacterizealocalmaxi-
mum.Profitsarezeroontheboundary(qora=0),sotheequations
describeaglobalmaximum.
Theseequationsaresatisfiedatthegivenpoint(checkbysubstitu-
tion).
(c)Isitpossibletodescribehowtheprofitmaximizingvaluesofqand
achangeasaandBchange?Ifso,computethederivativesofqand
aasfunctionsofaand§near(q,a,a,0)=(5,5,5,2.5).Derivatives
withrespecttoa:
(15-2Q)OIQ-2QOI4=2Aand-2(4+0)OiQ+(15-2Q)0i4=0.
or
5£)iQ-lODiA=10and-15D1Q+5J9M=0
soZ)iQ(5,2.5)=-.4andDM(5,2.5)=-1.2
Similarly,derivativeswithrespectto/?:
5D2Q-10V2Q=0and-15D2Q+5D2A=10.
so02Q(5,2.5)=—.8and£>2-(5,2.5)=—.4(Soitispossible.)
2
(d)Ifaincreasesto5.01and(3decreasesto2.48willthemonopolisfs
outputincrease?
Thequestionasksfor.01(2Q—2D?Q)=.01(—.4—2(—.8))=
.01(1.2)>0,sotheanswerisyes.
3
MathematicsforEconomists
Economics205,Fall2010
GeneralInformation
Instructor:JoelSobel
Office:311Economics
OfficeHours:Afterclass
Phone:(858)534-4367
Email:jsobel@
Homepage(withlinktohandoutsforcourse):
/%7Ejsobel/205fl0/205fl0home.htm
TeachingAssistant:LawrenceSchmidt(lschmidt@)
Oi'ganization
Theclassmeetsfrom8:30to(approximately)11:00everyweekdayfromMonday,August23
throughMonday,September13,withthefollowingexception:ThereisnoclassonSeptember6.I
willalsousetimebetween11:00and11:30ifnecessaryforquizzesortostayonschedule.
Inaddition,theclassroomwillbeavailablefrom1:00-4:00forstudysessionsonmostdays.On
somedaystherewillbeorganizedproblemsessionsledbytheTA.Onotherdays,studentscanuse
theroomtoworktogetheronclassmaterial.
Description
Thiscourseisarapidoverviewoftopicsincalculus,advancedcalculus,optimization,andlinear
algebrathatarerelevanttoeconomictheory.Itprovidessomeofthenecessarymathematical
backgroundtobeginthecoregraduatesequence.Thecoursecoversalargeamountofmaterialata
relativelyhighlevelofrigor.
Ifyouhavemasteredthematerialinstandardupper-divisionanalysisandlinearalgebraclasses,
thenthisclassshouldcontainlittlethatisnew.Ifithasbeenalongtimesinceyouhaveused
calculus,thenthecoursewillbedifficult.Ifyouhaveneverusedcalculus,thenthecoursemaybe
impossible.
Toavoidmisunderstandings,letmeemphasizethattheclassisnotsimplyareviewoflower-
divisioncalculus.Nordoesitcoverall(orevenmost)ofthemathematicsusedinthecoreclasses.
Requirements
Themainevaluationwillbeathreehour,closedbook,closednotesexaminationtentatively
scheduledforThursday,September16from8:30to11:30.(Thistimebecomesofficialifthereareno
complaintstoday.)Yourgradewillbethemaximumofyourgradeonthefinalexamination,anda
weightedaverageofyourfinalexamgrade(75%),andyourperformanceonquizzes.Youmust,pass
thefinalexaminationinordertoenrollinEconomics200A.OfficiallythiscourseispartoftheFall
Quarter,soyouhavetheunusualabilitytoenrollintheclassafterityoucompletedit.
Problemsareanecessarypartoflearningthematerial.Iwillsuggestproblemsandthereare
additionalproblemspostedonthewebpage.Itisimportantthatyoufindexercisesthatareatyour
level-challenging,butnotimpossible.Ifthesuggestedproblemsaretooeasyortoohard,letme
knowandI'llfindsomethingappropriateforyou.Relevantproblemsarealsoavailableinthetexts.
Therewillbealistofproblemspostedonthewebpage.Iwillsuggestproblemsfromtextsinmost
classperiods.Youshouldattempttodothemthroughoutthecourse.
1
TextsandCourseMaterial
(SB)C.SimonandL.Blume,MathematicsforEconomists
(N)W.Novshek,MathematicsforEconomists
(D)A.Dixit,OptimizationinEconomicTheory,2ndedition
(MA)K.G.Binmore,MathematicalAnalysis
(C)K.G.Binmore,Calculus
(CH)A.Chiang,FundamentalMethodsofMathematicalEconomics
(SB)shouldbeavailableintheUniversityBookstore.Ihavecopiesofallbooks(andothers).In
additiontothesebooks,mywebpagecontainscoursenotespreparedbyJoelWatsonandme.These
areaworkinprogress,filledwitherrors,inconsistentnotation,andirrelevantmaterial.Iwillmake
anefforttoupdateandaugmentthesenotesthroughouttheclass.
Therearemanybooksthatcoverthebasicmaterialofthiscourse.Feelfreetouseanotherbook
asaprimaryreference.(Ifyouarenotsurewhetheranotherbookisadequate,thencheckwithme.)
(SB)isofficiallythetextforthecourse.Ithasthefollowingstrengths:itcontainsmanyeconomic
examples;itcoversthetopicsthatIintendtocover;itcoversothermaterialthatyoushouldknow;it
hasmanyproblemsandsolutions.Ontheotherhand,itispoorlyorganizedanditsleveloftreatment
isuneven.Mylectureswillbequitedifferentfromthetextmaterial.(N)isconcise,coversmost
ofthetopics,andhasmanyproblemsandsolutions.Itscoverageofone-variablecalculusisbrief
anditsapproachtooptimizationismechanical.(D)isaniceintroductiontooptimizationfromthe
perspectiveofeconomics.(MA)isaconciseintroductionto“advanced”one-variablecalculus.It
presentsdefinitionsandtheoremswithcareandprovidesanintroductiontoproofs.Itisslightly
moreadvancedthanthecoursewillbe.Itmaybeagoodplacetolookifthematerialinthefirst
weekseemstoeasy.(C)ismorebasicthan(MA).Ithasreasonablecoverageofmostofthetopics
ofmulti-variablecalculus.(CH)isastandardreferenceforcoursesinmathematicsforeconomists,
butIfindittoomechanical.Itmaybeagoodplacetolookifthelecturesseemdifficult.Dixit
containsmaterialrelevanttotheoptimizationtopics.
Paternalism
WhenIstartedteachingthiscourse(beforeyouwereborn),Ijustintroducedmyself,described
thetopics,andbeganteachingmatii.Gradually,Ispentmoreandmoretimetellingtheclassthings
thatIthoughtwouldhelpitadjusttothegraduateprogram.NowIhavelearnedthatthefirstday
ofclassisnotagoodtimetogetadviceand,besides,you345161hearsimilaradvicefromothers.Here
isashortlistofrecommendations.Consultthelistwhenyouareready.
1.Youcannotlearnmathematicsbyreadingabook.Itisbettertoworkproblems.Itisbetter
stilltoposeproblemsyourselfandtrytosolvethem.
2.PerformanceinEcon205isrelatedtohowmuchmathyoualreadyknow.Itisagoodpredictor
ofsuccessinfirst-yearcourses.Itisabadpredictorofthequalityofyourdissertation.
3.Thehardestpartofgraduateschoolisstartingyourresearchproject.(Inparticular,itisnot
Econ205.)
4.Nooneonthefacultywantsyoutofail.
5.BenicetoRebecca,Rafael,Nieves,
6.Youdonotneedtoknoweverythingalready.
2
7.Workandplaywithclassmates.You'lllearnmorefromthemthanyourprofessors.Some
ofthemwillbefriendsandcolleaguesforlife.
8.Figureoutwhatisimportanttoyou.
9.Goodresearchprojectsarenotscarce,buttheyarehardtofind.
TopicalOutlineandReferences
ThetableonthenextpageliststhetopicsthatIhopetocover.(Irarelyreachdifferential
equationsandintegration.)Itrelatesthetopicstopagesinfiveofthetextsmentionedabove.The
numberofpagesdevotedtoeachtopicvariesdrasticallyfromtexttotext.Thequalityandthelevel
oftreatmentvaryaswell.
TopicChMACNSB
BasicConcepts132-441-48:65-841-2;36-423-9;847-57
Continuity145-4985-912-3;42-4410-21
Differentiability128-32;149-7492-1003-522-34;39-42;70-4
MeanValueTheorems254-62101-85-6822-32
Extrema,Concavity43-6;51-69
One-variablewrapup138-4375-103
Vectors54-871-32199-204;209-30
Eigenvalues188-94;579-84;601-7;609-15
QuadraticForms375-86;398-404:620-32
VectorCalculus169-7839-5956-70273-95;301-5;313-28
Multi-variableMVT101-2970-73328-32;832-6
ImplicitFunctions184-86;204-27161-211133-46334-64
UnconstrainedOptimization231-54;307-68149-546-7;73-77375-86;396-410
EqualityConstraints369-43285-9577-103411-23:478-80
InequalityConstraints688-755131-35111-127424-78;480-2
Integration435-57226-469-19887-92
DifferentialEquations470-96313-3220633-665
3
Economics205FinalExaminationFall2010
CommentsonCourseGrade.TotalPoints:1200.High:1134;Low:558;Median:913;Mean
900.Formula:Maximumof(Final,.75Final+Quizzes,5/6Final+2BestQuizzes).Grading:
?LowestB,662.
?LowestB+,815.
?LowestA—,854
?LowestA,1023.
CommentsonFinaLHigh:1130/1200;Low492;Median895;Mean:882.
I.Somepeoplewerecasualaboutjustifyingtheirstepsandaboutthedomainofdefinition.
2.Fine(exceptafewpeopledidnotknowhowtoperformintegrationbyparts).
3.OK.
4.Somepeopledidextrawork(youneededtodiagonalizeonlyonematrix).
5.Minordeductionsfornotjustifyingyourmethod.
6.Part(b)hadatypo(correctedbelow).Youneedstrictmonotonicity(notcontinuity)for
uniqueness.Mostrespondedtothepoorlyposedquestionbywritingnonsense.Weallo-
catedallofthepointsintheproblemtotheotherparts,sonoonelostpointsforresponses
to(b).Onpart(c)severalpeopleforgotthatCEwasimplicitlydefinedbytheequation
(theytreatedIhsasCinsteadof〃(C)).Thisisasignificanterrorandledtoasignificant
deduction.
7.HereitwasokifyousolvedtheproblemusingtheobjectivefunctionSa;1^3^13—wx2—wy2
(theanswersbelowarefor—wx2—wy2.
8.Onthefirstpartsomepeopleactedasispositivesemi-definiterequiresazeroeigenvalue.
Nottrue.Positivedefinitematricesandpositivesemi-definite(inthesamewaythatpositive
numbersarenon-negative).
1.Ineachpart,determineatwhichpointsthederivativeofthefunctionhexists.Whenitdoes
exist,computeit.Whenitdoesnotexist,explainwhyitdoesnotexist.
(a)h{x)=log(l+log(l+N)).
Forcontinuityyouneedtheargumentsofthelogstobepositive.Thismeansthatyou
needx>—1inorderfor1+log(l+%)>0andlog(l+T)>—1inorderfor
1+log(l+x)>0.Thismeansyouneed1+x>e~1orx>6T—1.
h!(x)=-———
(1+x)(l+log(l+n))
bythechainrule(sincethederivativeoflog(l+a)=1/(1+7)).
1
(b)h(x)=?兩)2.
Thisoneisdifferentiablewhenrr>0(compositionofdifferentiablefunctions).Since
theformulaisjustacomplicatedwayofwritingh,⑺=x2,h![x]=2x.
(c)h(x)=J;于⑹dyforacontinuousfunction/.
Y(N)=/(/),alwaysdifferentiable(bythefundamentaltheoremofcalculus).
(d)h(x)=J:f⑺dgforacontinuousfunctionf.
Here//(①)=/⑺+//(①)providedthatfisdifferentiableatx.When力#0,
differentiabilityoffatrrisanecessaryconditionforhtobedifferentiableatx.When
z=0,"(0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年5G通信技術(shù)入股合伙人合同3篇
- 2024年度企事業(yè)單位食堂供餐服務(wù)合同范本3篇
- 2024年度醫(yī)療健康產(chǎn)業(yè)股權(quán)分配合同模板2篇
- 2024年橋梁工程評估咨詢合同
- 2024年度影視制作與藝人表演合作合同3篇
- 2024年標準代理采購免責聲明合同書版
- 2024年新型廠房租賃居間代理合同2篇
- 2024年度品牌形象設(shè)計推廣合同6篇
- 2024版停車場車位預(yù)訂系統(tǒng)技術(shù)許可協(xié)議
- 2024版大米深加工技術(shù)研發(fā)與應(yīng)用合同匯編3篇
- 工業(yè)自動化設(shè)備維護與升級手冊
- 8《網(wǎng)絡(luò)新世界》(第一課時)教學設(shè)計-2024-2025學年道德與法治四年級上冊統(tǒng)編版
- 遼寧省水資源管理集團有限責任公司招聘筆試真題2022
- 2024內(nèi)蒙古文物考古研究所招聘歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 眼科延續(xù)護理
- 初中語文++第21課《小圣施威降大圣》課件+統(tǒng)編版語文七年級上冊
- 服裝修改行業(yè)市場需求變化帶來新的商業(yè)機遇分析報告
- 幼兒園小班語言《點點點》課件
- 0-3歲嬰幼兒營養(yǎng)與健康智慧樹知到期末考試答案章節(jié)答案2024年杭州師范大學
- 2025屆新高考物理熱點精準復習:高中物理6大模塊計算題思路總結(jié)
- 八年級道法上冊第一學期期末綜合測試卷(人教版 2024年秋)
評論
0/150
提交評論