ucsd博士一年級課程 mathematics of economists 習題指南_第1頁
ucsd博士一年級課程 mathematics of economists 習題指南_第2頁
ucsd博士一年級課程 mathematics of economists 習題指南_第3頁
ucsd博士一年級課程 mathematics of economists 習題指南_第4頁
ucsd博士一年級課程 mathematics of economists 習題指南_第5頁
已閱讀5頁,還剩275頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Economics205,Fall2010

QuizI

August27,2010

Instructions.Trytoanswerall3problems.(Readallofthequestionsnow

andstartontheonesthatseemeasiest).Makeyouranswersascompleteand

rigorousaspossible.Wlienyoucomputeaderivativesay“Thisstepfollowsfrom

thechainrule^^or“Becausethederivativeofasumisthesumofthederivatives

...Whenyoutakealimit,invokethenecessaryresults(orgiveadirectproof

withes).

Informalandintuitiveargumentsarebetterthannothing.

1.Let/beadifferentiablefunction.Calculatethederivativeofthefunction

hdefinedineachoftheproblemsbelow.Ifyouneedadditionalassump-

tions,makethemexplicit:

(a)h(x)=log/(x2)

(b)h(x)=/(logx)

(c)/i(x)=elog工

2.Calculatethelimitsindicatedbelow.

(a)lim7Too

(b)lim①T5

(c)lima._>0+xlogx.

3.Letf:[0.1]—>R.

(a)Provethatif

|a-41/2>(a)-/(b)|foralla,6€[0,1],(1)

thenfiscontinuouson(0,1).

(b)Giveanexampleofanon-constantfunctionfthatsatisfies(??).

[Provethatyourexamplesatisfiesthecondition.]

1

Economics205.Fall2010

QuizI,PossibleAnswers

August27,2010

Comments.Scoresoutof100.Range:46-96.Average:81,Median:83.

Allocation:40/40/30.

Firstquestion:OK,butsomepeopledidnotnoterangeofvalidity.Third

question:Thisiswheremostpeoplelostpoints.

Minimal(butpositive!)deductionfornotprovidingjustification.Deduc-

tionsfornotexplainingyouranswerswillincreaseonfutureassessments.

1.Let/beadifferentiablefunction.Calculatethederivativeofthefunction

hdefinedineachoftheproblemsbelow.Ifyouneedadditionalassump-

tions,makethemexplicit:

(a)h(x)=log/(a;2).)bytheChainRule(twice).You

canonlydothiscomputationwhen/(T2)>0.

(b)h(x)=/(logT).九'(①)=/'(log①)//bythechainruleandtherule

fordifferentiatingloga?.Needx>0forhtobedefined.

logx

(c)h(x)=e=xysoh!(x)=1

2.Calculatethelimitsindicatedbelow.

i;m—n

(a)UIURTOO3rl3+6-u

Givene>0,letAT=1/e

n2—1n2—1

0<―-<—<6.

3n3+6n3

(b)“ru;工二十5言=2.3.

(Limitofcontinuousfunctionratioofpolynomialswithnonzero

denominator.Sobycontinuity,justevaluate.)

lima._+0+xlogx=lim£ToiCanuseL'Hopital'sRuleonlast

expressiontoobtain:

limlim等1而4=0

Z

6T0+CT0+l/xX->0+—1/X

3.Letf:[0?1]tR.

1

(a)Provethatif

1/2

\a-b\>|/(Q)-/(d)|foralla,be[0,1],(1)

thenfiscontinuouson(0,1).

Theinequalitysaysthat-f(a)-f(b)-is“sandwiched”betweenthe

constantfunctionequaltozeroandthefunctiong(x)=\a—①?

Sincegiscontinuousata(acceptedwisdom),linib->a1/(。)一/(6)|=

0.Thisiswhatweneededtoshow.

(b)Giveanexampleofanon-constantfunctionfthatsatisfies(1).

[Provethatyourexamplesatisfiesthecondition.]

Therearemanypossibilities.f(x)=xworksbecause\a—>

\a—b\foralla,6€[0,1].(Toprovethisassertionyoucannotethat

theright-handsideoftheinequalityisnon-negative,sotheinequality

isequivalentto

|a-6|>|a-6|2

(squarebothsides).Thisinequalityholdswhena=bandotherwise

isequivalentto1>\a-b|,whichwillholdwhena,b£[0.1].

2

Economics205.Fall2010:QuizII

September3.2010

Instructions.Trytoanswerallthreeproblems.(Readallofthequestions

nowandstartontheonesthatseemeasiest.)Thinkbeforeyouwrite.You

shouldbeabletodoeverythingwithoutmuchtediouscomputation.Makeyour

answersascompleteandrigorousaspossible:givereasonsforyourcomputations

andproveyourassertions.Informalandintuitiveargumentsarebetterthan

nothing.

1.Decidewhethereachofthestatementsbelowistrue.Ifthestatementis

true,thenproveit.Ifthestatementisfalse,thengiveacounterexample.

Ineachpart/:R—>IR,istwicecontinuouslydifferentiableandstrictly

concave.

(a)x=1cannotsolveminf(x)subjecttoxe[0,1].

(b)If⑴=0,then1isalocalmaximumoff.

(c)Thereexistsnofunctionf(satisfyingtheassumptionsoftheprob-

lem)suchthat/(0)=/(I)=f⑵.

-ioo-

2.LetA=001.

_010_

(a)FindtheeigenvaluesofA.

(b)Findamaximalcardinalitysetoflinearlyindependent,eigenvectors

forA.Associatetheseeigenvectorswiththeeigenvaluesyoufound

inParta.

(c)IsAdiagonalizable?

(d)Ifthematrixisdiagonalizable,findamatrixPsuchthatA=

PDPT,whereDisdiagonal.

(e)StatewhetherthequadraticformQ(N)=xlAxispositive(semi-)

definite,negative(semi-)definite,orindefinite.

3.Letw=(1,4,0)andv=(1,0,2).

(a)Findtheequationofthelinethatpassesthroughthepointwinthe

directionv.

(b)Findtheequationofahyperplanethatcontainsthepointwand

containsthelineyoufoundinpart(a).

(c)Findanequationofalinethatiscontainedinthehyperplanethat

youfoundinpart(b),containsthepointw,andisorthogonaltothe

lineyoufoundinpart(a).

1

Economics205,Fall2010:QuizII,PossibleAnswers

September3.2010

Comments.100pointspossible,range39-99,median82,mean76.

1.Somepeopledidnotknowthedefinitionofconcavity.Apparentlysome

peopleclaimedthatf<0impliesthatfismonotonicallyincreasing.

Nope(try—x2).Concavefunctionstypicallyincreaseandthendecrease

(graphslooklikeanupside-down"U."Thethirdpartyisprobablyeasiest

ifyonjustusethedefinition.

2.Rememberthatwhenyouhaveane-valueformultiplicitykyouneedto

findklinearityindependentassociatede-vectorstodiagonalize.

3.Answerstopart(c)werenotgood,apparentlyduetotimepressure.

1.(a)False.Pickafunctionthatisstrictlyconcaveanddecreasing,for

examplef(x)=1—x2.On[0,1]thisfunctionattainsitsunique

minimumat①=1.

(b)True.Infact,itwillbeaglobalmaximum.

(c)True.Bystrictconcavity,/(I)>.5/(0)+.5/(1).

2.(a)Eigenvaluesare—1and1,themultiplicityoftheeigenvalue1istwo.

(b)Twolinearlyindependenteigenvectorsassociatedwiththeeigenvalue

1are:(1,0,0)and(0,1,1).Aneigenvectorassociatedwiththeeigen-

value—1is:(0,1,—1).

(c)Aisdiagonalizable(symmetric).

(d)OnepossiblePisthematrixwithcolumnsequaltonormalizedeigen-

'100-

vectors:P—°尖壺.Inthiscase,P-1=Pl=Pand,

100

ifD=010,thenA=PDP-1.

00-1

(e)QuadraticFormisIndefiniteSinceithaspositiveandnegativeeigen-

values.

3.Letw=(1,4,0)andv=(1,0,2).

(a)Findtheequationofthelinethatpassesthroughthepointwinthe

directionv.

Point:w=(1,4,0);Direction:v=(1,0,2).Equation:w+tv.

(b)Findtheequationofahyperplanethatcontainsthepointwand

containsthelineyoufoundinparta.

1

Point:w;Orthogonaldirection:Anythingorthogonaltov.Forex-

ample:u=(0,1,0).

Equation:"?(①一僅)=0or①2=4.Therearelots(infinitelymany)

ofalternativesolutions.

(c)Findanequationofalinethatiscontainedinthehyperplanethat

youfoundinpartb,containsthepointw,andisorthogonaltothe

lineyoufoundinparta.

Point:w;Direction:mustbeorthogonaltobothvandu.Thatis,

ifthedirectionisp=(P1,P2,P3),thenp?v=0(thisguarantees

thatthelineisorthogonaltothelineinparta)andp-u=0(this

guaranteesthatthelineisintheplanedescribedinpartb).Hence

pi+2P3=0andp?=0,soadirectionisp=(2,0,—1)andequation

forlineis:

w+tp

2

Economics205,Fall2010

QuizIII

September10,2010

Instructions.Ti*ytoanswerallpartsofbothquestions.Makeyouranswers

ascompleteandrigorousaspossible.Informalandintuitiveargumentsare

betterthannothing,butpleaseprovidecompletejustification.

1.LetK={(x^y):x2+y2<4}.

(a)ProvethatKisconvex.

(b)Showthat(3,1)隼K.

(c)FindtheequationofahyperplanethatseparatesKfrom(3,1).

(d)Showthat(%(),如)=(0,2)satisfiesx2-\-y2=4.

(e)Isitpossibletosolvetheequationx24-7/2=4foryasadifferentiable

functionofxfor(rr.y)near(0,2).Ifso.writey=Y(x)andfind

y'(o).

(f)Isitpossibletosolvetheequationx2-\-y2=4forxasadifferentiable

functionofyfor(rr,y)near(0.2).Ifso,writex=X(y)andfind

X").

2.Amonopolyfirmcaninfluencedemandbyadvertising.Ifthefirmbuys

aunitsofadvertising,itcansellqunitsatthepriceP(a,q)=a(15—q).

Thepriceofaunitsofadvertisingisaa2dollars.Itcoststhemonopolist

0q2toproducequnits.

(a)Writetheprofitfunctionofthefirm.

(b)Showthatwhena=5and3=2.5thesolutiontothemonopolist

profitmaximizationproblemistoseta=5andq=5.

(c)Isitpossibletodescribehowtheprofitmaximizingvaluesofqand

achangeasaand/3change(nearthepointinpart(b))?Ifso,

computethederivativesofqandaasfunctionsofaandBnear

=(5,).

(d)Ifaincreasesto5.01and0decreasesto2.48willthemonopolisfs

outputincrease?

1

Economics205,Fall2010

QuizIIIPossibleAnswers

September10,2009

Comments.Range:50-98,Median:73,Mean:75.Larrysaysthatmostdid

wellonthefirstquestion.Hesaidthatsomepeopleconfusedthedefinition

ofconvexityofasetwithconvexityofafunction.Thedefinitionsarerelated,

ofcourse,butdifferent.Hereportedthattherewereproblemsfiguringout

whatequationsneededtobedifferentiatedtoanswerthelastpartsofquestion

two.Istillmaintainthatitiseasierandmoreintuitivetodotheseproblems

directlyratherthanattemptingtoforcethingsintotheimplicitfunctiontheorem

formula.Thesecondquestionillustratesanimportanttechnique.

1.LetK={(x,y):x2+y2<4}.

(a)ProvethatKisconvex.

Oneanswer:h(z)=/jsaconvexfunction(secondderivativeposi-

tive),so

(Xz+(1-A)?)2<A/+(i_A)(?)2.

Itfollowsthatif(z,y),(a/,yf)€K,and(〃,v)=(Xr+(1—X)xf,Xy+

(1-W),then

u2<Xx2+(1—A)(xz)2,

v2<AT/2-F(1-A)(y)2,

andhenceu2+v2<4.

(b)Showthat(3,1)隹K.

9+1>4

(c)FindtheequationofahyperplanethatseparatesKfrom(3,1).

Theproofoftheseparatingliyperplanetheoremusethedirection

ofthelinethatconnects(3.1)tothepointinKclosestto(3,1).

Thispointturnsouttobe(x^y)=v\4(3.1).Sothehyperplane

wouldhavenormalinthedirection(3,1)—(①,g)andpassthrough

apointonthesegmentconnecting(①,g)to(3,1).Asimplerto

describeseparatinghypcrplaneisi=2.5.EverypointinKisin

{(x^y)\x<2.5},while3>2.5.

(d)Showthat(%yo)=(0,2)satisfiesx2+y2=4.

0+4=4.

1

(e)Isitpossibletosolvetheequationx2-^-y2=4for?/asadifferentiable

functionofxfor(x,y)near(0,2).Ifso.writey=Y(x)andfind

⑵.

Itispossiblebecauseatthispointthederivativeofx2+y2with

respecttoyisnotzero.Yf(2)=0.

(f)Isitpossibletosolvetheequationx2-\-y2=4forxasadifferentiable

functionofyfor(x,y)near(0.2).Ifso,writex=andfind

X").

Itisnotpossiblebecauseatthispointthederivativeofx2+y2with

respecttoxiszero.

2.Amonopolyfirmcaninfluencedemandbyadvertising.Ifthefirmbuys

aunitsofadvertising,itcansellqunitsatthepriceF(a,q)=a(15—q).

Thepriceofaunitsofadvertisingisaa2dollars.Itcoststhemonopolist

(3q2toproducequnits.

(a)Writetheprofitfunctionofthefirm.

P(a,q)q—aa?—.

(b)Showthatwhena=5and8=.5thesolutiontothemonopolist's

profitmaximizationproblemistoseta=10andq=5.

First-orderconditions:

a(15—2q)—2/3q=0and(15—q)q—2aa=0.

Youcancheck(bydifferentiatingagain)thattheobjectivefunction

isstrictlyconcave,sofirst-orderconditionscharacterizealocalmaxi-

mum.Profitsarezeroontheboundary(qora=0),sotheequations

describeaglobalmaximum.

Theseequationsaresatisfiedatthegivenpoint(checkbysubstitu-

tion).

(c)Isitpossibletodescribehowtheprofitmaximizingvaluesofqand

achangeasaandBchange?Ifso,computethederivativesofqand

aasfunctionsofaand§near(q,a,a,0)=(5,5,5,2.5).Derivatives

withrespecttoa:

(15-2Q)OIQ-2QOI4=2Aand-2(4+0)OiQ+(15-2Q)0i4=0.

or

5£)iQ-lODiA=10and-15D1Q+5J9M=0

soZ)iQ(5,2.5)=-.4andDM(5,2.5)=-1.2

Similarly,derivativeswithrespectto/?:

5D2Q-10V2Q=0and-15D2Q+5D2A=10.

so02Q(5,2.5)=—.8and£>2-(5,2.5)=—.4(Soitispossible.)

2

(d)Ifaincreasesto5.01and(3decreasesto2.48willthemonopolisfs

outputincrease?

Thequestionasksfor.01(2Q—2D?Q)=.01(—.4—2(—.8))=

.01(1.2)>0,sotheanswerisyes.

3

MathematicsforEconomists

Economics205,Fall2010

GeneralInformation

Instructor:JoelSobel

Office:311Economics

OfficeHours:Afterclass

Phone:(858)534-4367

Email:jsobel@

Homepage(withlinktohandoutsforcourse):

/%7Ejsobel/205fl0/205fl0home.htm

TeachingAssistant:LawrenceSchmidt(lschmidt@)

Oi'ganization

Theclassmeetsfrom8:30to(approximately)11:00everyweekdayfromMonday,August23

throughMonday,September13,withthefollowingexception:ThereisnoclassonSeptember6.I

willalsousetimebetween11:00and11:30ifnecessaryforquizzesortostayonschedule.

Inaddition,theclassroomwillbeavailablefrom1:00-4:00forstudysessionsonmostdays.On

somedaystherewillbeorganizedproblemsessionsledbytheTA.Onotherdays,studentscanuse

theroomtoworktogetheronclassmaterial.

Description

Thiscourseisarapidoverviewoftopicsincalculus,advancedcalculus,optimization,andlinear

algebrathatarerelevanttoeconomictheory.Itprovidessomeofthenecessarymathematical

backgroundtobeginthecoregraduatesequence.Thecoursecoversalargeamountofmaterialata

relativelyhighlevelofrigor.

Ifyouhavemasteredthematerialinstandardupper-divisionanalysisandlinearalgebraclasses,

thenthisclassshouldcontainlittlethatisnew.Ifithasbeenalongtimesinceyouhaveused

calculus,thenthecoursewillbedifficult.Ifyouhaveneverusedcalculus,thenthecoursemaybe

impossible.

Toavoidmisunderstandings,letmeemphasizethattheclassisnotsimplyareviewoflower-

divisioncalculus.Nordoesitcoverall(orevenmost)ofthemathematicsusedinthecoreclasses.

Requirements

Themainevaluationwillbeathreehour,closedbook,closednotesexaminationtentatively

scheduledforThursday,September16from8:30to11:30.(Thistimebecomesofficialifthereareno

complaintstoday.)Yourgradewillbethemaximumofyourgradeonthefinalexamination,anda

weightedaverageofyourfinalexamgrade(75%),andyourperformanceonquizzes.Youmust,pass

thefinalexaminationinordertoenrollinEconomics200A.OfficiallythiscourseispartoftheFall

Quarter,soyouhavetheunusualabilitytoenrollintheclassafterityoucompletedit.

Problemsareanecessarypartoflearningthematerial.Iwillsuggestproblemsandthereare

additionalproblemspostedonthewebpage.Itisimportantthatyoufindexercisesthatareatyour

level-challenging,butnotimpossible.Ifthesuggestedproblemsaretooeasyortoohard,letme

knowandI'llfindsomethingappropriateforyou.Relevantproblemsarealsoavailableinthetexts.

Therewillbealistofproblemspostedonthewebpage.Iwillsuggestproblemsfromtextsinmost

classperiods.Youshouldattempttodothemthroughoutthecourse.

1

TextsandCourseMaterial

(SB)C.SimonandL.Blume,MathematicsforEconomists

(N)W.Novshek,MathematicsforEconomists

(D)A.Dixit,OptimizationinEconomicTheory,2ndedition

(MA)K.G.Binmore,MathematicalAnalysis

(C)K.G.Binmore,Calculus

(CH)A.Chiang,FundamentalMethodsofMathematicalEconomics

(SB)shouldbeavailableintheUniversityBookstore.Ihavecopiesofallbooks(andothers).In

additiontothesebooks,mywebpagecontainscoursenotespreparedbyJoelWatsonandme.These

areaworkinprogress,filledwitherrors,inconsistentnotation,andirrelevantmaterial.Iwillmake

anefforttoupdateandaugmentthesenotesthroughouttheclass.

Therearemanybooksthatcoverthebasicmaterialofthiscourse.Feelfreetouseanotherbook

asaprimaryreference.(Ifyouarenotsurewhetheranotherbookisadequate,thencheckwithme.)

(SB)isofficiallythetextforthecourse.Ithasthefollowingstrengths:itcontainsmanyeconomic

examples;itcoversthetopicsthatIintendtocover;itcoversothermaterialthatyoushouldknow;it

hasmanyproblemsandsolutions.Ontheotherhand,itispoorlyorganizedanditsleveloftreatment

isuneven.Mylectureswillbequitedifferentfromthetextmaterial.(N)isconcise,coversmost

ofthetopics,andhasmanyproblemsandsolutions.Itscoverageofone-variablecalculusisbrief

anditsapproachtooptimizationismechanical.(D)isaniceintroductiontooptimizationfromthe

perspectiveofeconomics.(MA)isaconciseintroductionto“advanced”one-variablecalculus.It

presentsdefinitionsandtheoremswithcareandprovidesanintroductiontoproofs.Itisslightly

moreadvancedthanthecoursewillbe.Itmaybeagoodplacetolookifthematerialinthefirst

weekseemstoeasy.(C)ismorebasicthan(MA).Ithasreasonablecoverageofmostofthetopics

ofmulti-variablecalculus.(CH)isastandardreferenceforcoursesinmathematicsforeconomists,

butIfindittoomechanical.Itmaybeagoodplacetolookifthelecturesseemdifficult.Dixit

containsmaterialrelevanttotheoptimizationtopics.

Paternalism

WhenIstartedteachingthiscourse(beforeyouwereborn),Ijustintroducedmyself,described

thetopics,andbeganteachingmatii.Gradually,Ispentmoreandmoretimetellingtheclassthings

thatIthoughtwouldhelpitadjusttothegraduateprogram.NowIhavelearnedthatthefirstday

ofclassisnotagoodtimetogetadviceand,besides,you345161hearsimilaradvicefromothers.Here

isashortlistofrecommendations.Consultthelistwhenyouareready.

1.Youcannotlearnmathematicsbyreadingabook.Itisbettertoworkproblems.Itisbetter

stilltoposeproblemsyourselfandtrytosolvethem.

2.PerformanceinEcon205isrelatedtohowmuchmathyoualreadyknow.Itisagoodpredictor

ofsuccessinfirst-yearcourses.Itisabadpredictorofthequalityofyourdissertation.

3.Thehardestpartofgraduateschoolisstartingyourresearchproject.(Inparticular,itisnot

Econ205.)

4.Nooneonthefacultywantsyoutofail.

5.BenicetoRebecca,Rafael,Nieves,

6.Youdonotneedtoknoweverythingalready.

2

7.Workandplaywithclassmates.You'lllearnmorefromthemthanyourprofessors.Some

ofthemwillbefriendsandcolleaguesforlife.

8.Figureoutwhatisimportanttoyou.

9.Goodresearchprojectsarenotscarce,buttheyarehardtofind.

TopicalOutlineandReferences

ThetableonthenextpageliststhetopicsthatIhopetocover.(Irarelyreachdifferential

equationsandintegration.)Itrelatesthetopicstopagesinfiveofthetextsmentionedabove.The

numberofpagesdevotedtoeachtopicvariesdrasticallyfromtexttotext.Thequalityandthelevel

oftreatmentvaryaswell.

TopicChMACNSB

BasicConcepts132-441-48:65-841-2;36-423-9;847-57

Continuity145-4985-912-3;42-4410-21

Differentiability128-32;149-7492-1003-522-34;39-42;70-4

MeanValueTheorems254-62101-85-6822-32

Extrema,Concavity43-6;51-69

One-variablewrapup138-4375-103

Vectors54-871-32199-204;209-30

Eigenvalues188-94;579-84;601-7;609-15

QuadraticForms375-86;398-404:620-32

VectorCalculus169-7839-5956-70273-95;301-5;313-28

Multi-variableMVT101-2970-73328-32;832-6

ImplicitFunctions184-86;204-27161-211133-46334-64

UnconstrainedOptimization231-54;307-68149-546-7;73-77375-86;396-410

EqualityConstraints369-43285-9577-103411-23:478-80

InequalityConstraints688-755131-35111-127424-78;480-2

Integration435-57226-469-19887-92

DifferentialEquations470-96313-3220633-665

3

Economics205FinalExaminationFall2010

CommentsonCourseGrade.TotalPoints:1200.High:1134;Low:558;Median:913;Mean

900.Formula:Maximumof(Final,.75Final+Quizzes,5/6Final+2BestQuizzes).Grading:

?LowestB,662.

?LowestB+,815.

?LowestA—,854

?LowestA,1023.

CommentsonFinaLHigh:1130/1200;Low492;Median895;Mean:882.

I.Somepeoplewerecasualaboutjustifyingtheirstepsandaboutthedomainofdefinition.

2.Fine(exceptafewpeopledidnotknowhowtoperformintegrationbyparts).

3.OK.

4.Somepeopledidextrawork(youneededtodiagonalizeonlyonematrix).

5.Minordeductionsfornotjustifyingyourmethod.

6.Part(b)hadatypo(correctedbelow).Youneedstrictmonotonicity(notcontinuity)for

uniqueness.Mostrespondedtothepoorlyposedquestionbywritingnonsense.Weallo-

catedallofthepointsintheproblemtotheotherparts,sonoonelostpointsforresponses

to(b).Onpart(c)severalpeopleforgotthatCEwasimplicitlydefinedbytheequation

(theytreatedIhsasCinsteadof〃(C)).Thisisasignificanterrorandledtoasignificant

deduction.

7.HereitwasokifyousolvedtheproblemusingtheobjectivefunctionSa;1^3^13—wx2—wy2

(theanswersbelowarefor—wx2—wy2.

8.Onthefirstpartsomepeopleactedasispositivesemi-definiterequiresazeroeigenvalue.

Nottrue.Positivedefinitematricesandpositivesemi-definite(inthesamewaythatpositive

numbersarenon-negative).

1.Ineachpart,determineatwhichpointsthederivativeofthefunctionhexists.Whenitdoes

exist,computeit.Whenitdoesnotexist,explainwhyitdoesnotexist.

(a)h{x)=log(l+log(l+N)).

Forcontinuityyouneedtheargumentsofthelogstobepositive.Thismeansthatyou

needx>—1inorderfor1+log(l+%)>0andlog(l+T)>—1inorderfor

1+log(l+x)>0.Thismeansyouneed1+x>e~1orx>6T—1.

h!(x)=-———

(1+x)(l+log(l+n))

bythechainrule(sincethederivativeoflog(l+a)=1/(1+7)).

1

(b)h(x)=?兩)2.

Thisoneisdifferentiablewhenrr>0(compositionofdifferentiablefunctions).Since

theformulaisjustacomplicatedwayofwritingh,⑺=x2,h![x]=2x.

(c)h(x)=J;于⑹dyforacontinuousfunction/.

Y(N)=/(/),alwaysdifferentiable(bythefundamentaltheoremofcalculus).

(d)h(x)=J:f⑺dgforacontinuousfunctionf.

Here//(①)=/⑺+//(①)providedthatfisdifferentiableatx.When力#0,

differentiabilityoffatrrisanecessaryconditionforhtobedifferentiableatx.When

z=0,"(0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論