2023年中考數(shù)學(xué)真題分項(xiàng)匯編專題28 動(dòng)點(diǎn)綜合問題(解析版)_第1頁
2023年中考數(shù)學(xué)真題分項(xiàng)匯編專題28 動(dòng)點(diǎn)綜合問題(解析版)_第2頁
2023年中考數(shù)學(xué)真題分項(xiàng)匯編專題28 動(dòng)點(diǎn)綜合問題(解析版)_第3頁
2023年中考數(shù)學(xué)真題分項(xiàng)匯編專題28 動(dòng)點(diǎn)綜合問題(解析版)_第4頁
2023年中考數(shù)學(xué)真題分項(xiàng)匯編專題28 動(dòng)點(diǎn)綜合問題(解析版)_第5頁
已閱讀5頁,還剩50頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題28動(dòng)點(diǎn)綜合問題(32題)1.(2023·四川遂寧·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,點(diǎn)P為線段SKIPIF1<0上的動(dòng)點(diǎn),以每秒1個(gè)單位長度的速度從點(diǎn)A向點(diǎn)B移動(dòng),到達(dá)點(diǎn)B時(shí)停止.過點(diǎn)P作SKIPIF1<0于點(diǎn)M、作SKIPIF1<0于點(diǎn)N,連接SKIPIF1<0,線段SKIPIF1<0的長度y與點(diǎn)P的運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系如圖所示,則函數(shù)圖象最低點(diǎn)E的坐標(biāo)為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】如圖所示,過點(diǎn)C作SKIPIF1<0于D,連接SKIPIF1<0,先利用勾股定理的逆定理證明SKIPIF1<0是直角三角形,即SKIPIF1<0,進(jìn)而利用等面積法求出SKIPIF1<0,則可利用勾股定理求出SKIPIF1<0;再證明四邊形SKIPIF1<0是矩形,得到SKIPIF1<0,故當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),SKIPIF1<0最小,即SKIPIF1<0最小,此時(shí)SKIPIF1<0最小值為SKIPIF1<0,SKIPIF1<0,則點(diǎn)E的坐標(biāo)為SKIPIF1<0.【詳解】解:如圖所示,過點(diǎn)C作SKIPIF1<0于D,連接SKIPIF1<0,∵在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是直角三角形,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0,∴四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0最小時(shí),即SKIPIF1<0最小,∴當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),SKIPIF1<0最小,即SKIPIF1<0最小,此時(shí)SKIPIF1<0最小值為SKIPIF1<0,SKIPIF1<0,∴點(diǎn)E的坐標(biāo)為SKIPIF1<0,故選:C.

【點(diǎn)睛】本題主要考查了勾股定理和勾股定理的逆定理,矩形的性質(zhì)與判斷,垂線段最短,坐標(biāo)與圖形等等,正確作出輔助線是解題的關(guān)鍵.2.(2023·廣東深圳·統(tǒng)考中考真題)如圖1,在SKIPIF1<0中,動(dòng)點(diǎn)P從A點(diǎn)運(yùn)動(dòng)到B點(diǎn)再到C點(diǎn)后停止,速度為2單位/s,其中SKIPIF1<0長與運(yùn)動(dòng)時(shí)間t(單位:s)的關(guān)系如圖2,則SKIPIF1<0的長為(

A.SKIPIF1<0 B.SKIPIF1<0 C.17 D.SKIPIF1<0【答案】C【分析】根據(jù)圖象可知SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合,得到SKIPIF1<0,進(jìn)而求出點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0運(yùn)動(dòng)到點(diǎn)SKIPIF1<0所需的時(shí)間,進(jìn)而得到點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0運(yùn)動(dòng)到點(diǎn)SKIPIF1<0的時(shí)間,求出SKIPIF1<0的長,再利用勾股定理求出SKIPIF1<0即可.【詳解】解:由圖象可知:SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合,∴SKIPIF1<0,∴點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0運(yùn)動(dòng)到點(diǎn)SKIPIF1<0所需的時(shí)間為SKIPIF1<0;∴點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0運(yùn)動(dòng)到點(diǎn)SKIPIF1<0的時(shí)間為SKIPIF1<0,∴SKIPIF1<0;在SKIPIF1<0中:SKIPIF1<0;故選:C.【點(diǎn)睛】本題考查動(dòng)點(diǎn)的函數(shù)圖象,勾股定理.從函數(shù)圖象中有效的獲取信息,求出SKIPIF1<0的長,是解題的關(guān)鍵.3.(2023·黑龍江綏化·統(tǒng)考中考真題)如圖,在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0,SKIPIF1<0同時(shí)從SKIPIF1<0點(diǎn)出發(fā),點(diǎn)SKIPIF1<0以每秒SKIPIF1<0個(gè)單位長度沿折線SKIPIF1<0向終點(diǎn)SKIPIF1<0運(yùn)動(dòng);點(diǎn)SKIPIF1<0以每秒SKIPIF1<0個(gè)單位長度沿線段SKIPIF1<0向終點(diǎn)SKIPIF1<0運(yùn)動(dòng),當(dāng)其中一點(diǎn)運(yùn)動(dòng)至終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為SKIPIF1<0秒,SKIPIF1<0的面積為SKIPIF1<0個(gè)平方單位,則下列正確表示SKIPIF1<0與SKIPIF1<0函數(shù)關(guān)系的圖象是(

A.

B.

C.

D.

【答案】A【分析】連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,根據(jù)已知條件得出SKIPIF1<0是等邊三角形,進(jìn)而證明SKIPIF1<0得出SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上,根據(jù)三角形的面積公式得到函數(shù)關(guān)系式,【詳解】解:如圖所示,連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上,

菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上,

∴SKIPIF1<0,綜上所述,SKIPIF1<0時(shí)的函數(shù)圖象是開口向上的拋物線的一部分,當(dāng)SKIPIF1<0時(shí),函數(shù)圖象是直線的一部分,故選:A.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,二次函數(shù)圖象的性質(zhì),一次函數(shù)圖象的性質(zhì),菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,相似三角形的性質(zhì)與判定,熟練掌握以上知識(shí)是解題的關(guān)鍵.4.(2023·黑龍江齊齊哈爾·統(tǒng)考中考真題)如圖,在正方形SKIPIF1<0中,SKIPIF1<0,動(dòng)點(diǎn)M,N分別從點(diǎn)A,B同時(shí)出發(fā),沿射線SKIPIF1<0,射線SKIPIF1<0的方向勻速運(yùn)動(dòng),且速度的大小相等,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)點(diǎn)M運(yùn)動(dòng)的路程為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,下列圖像中能反映SKIPIF1<0與SKIPIF1<0之間函數(shù)關(guān)系的是(

A.

B.

C.

D.

【答案】A【分析】先根據(jù)SKIPIF1<0,求出SKIPIF1<0與SKIPIF1<0之間函數(shù)關(guān)系式,再判斷即可得出結(jié)論.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0與SKIPIF1<0之間函數(shù)關(guān)系為二次函數(shù),圖像開口向上,SKIPIF1<0時(shí),函數(shù)有最小值6,故選:A.【點(diǎn)睛】本題考查了正方形的性質(zhì),二次函數(shù)的圖像與性質(zhì),本題的關(guān)鍵是求出SKIPIF1<0與SKIPIF1<0之間函數(shù)關(guān)系式,再判斷SKIPIF1<0與SKIPIF1<0之間函數(shù)類型.5.(2023·河南·統(tǒng)考中考真題)如圖1,點(diǎn)P從等邊三角形SKIPIF1<0的頂點(diǎn)A出發(fā),沿直線運(yùn)動(dòng)到三角形內(nèi)部一點(diǎn),再從該點(diǎn)沿直線運(yùn)動(dòng)到頂點(diǎn)B.設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,SKIPIF1<0,圖2是點(diǎn)P運(yùn)動(dòng)時(shí)y隨x變化的關(guān)系圖象,則等邊三角形SKIPIF1<0的邊長為(

)A.6 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】如圖,令點(diǎn)SKIPIF1<0從頂點(diǎn)SKIPIF1<0出發(fā),沿直線運(yùn)動(dòng)到三角形內(nèi)部一點(diǎn)SKIPIF1<0,再從點(diǎn)SKIPIF1<0沿直線運(yùn)動(dòng)到頂點(diǎn)SKIPIF1<0.結(jié)合圖象可知,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上運(yùn)動(dòng)時(shí),SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上運(yùn)動(dòng)時(shí),可知點(diǎn)SKIPIF1<0到達(dá)點(diǎn)SKIPIF1<0時(shí)的路程為SKIPIF1<0,可知SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,解直角三角形可得SKIPIF1<0,進(jìn)而可求得等邊三角形SKIPIF1<0的邊長.【詳解】解:如圖,令點(diǎn)SKIPIF1<0從頂點(diǎn)SKIPIF1<0出發(fā),沿直線運(yùn)動(dòng)到三角形內(nèi)部一點(diǎn)SKIPIF1<0,再從點(diǎn)SKIPIF1<0沿直線運(yùn)動(dòng)到頂點(diǎn)SKIPIF1<0.結(jié)合圖象可知,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上運(yùn)動(dòng)時(shí),SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0為等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上運(yùn)動(dòng)時(shí),可知點(diǎn)SKIPIF1<0到達(dá)點(diǎn)SKIPIF1<0時(shí)的路程為SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,

即:等邊三角形SKIPIF1<0的邊長為6,故選:A.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,解決本題的關(guān)鍵是綜合利用圖象和圖形給出的條件.6.(2023·四川樂山·統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系SKIPIF1<0中,直線SKIPIF1<0與x軸、y軸分別交于A、B兩點(diǎn),C、D是半徑為1的SKIPIF1<0上兩動(dòng)點(diǎn),且SKIPIF1<0,P為弦CD的中點(diǎn).當(dāng)C、D兩點(diǎn)在圓上運(yùn)動(dòng)時(shí),SKIPIF1<0面積的最大值是(

A.8 B.6 C.4 D.3【答案】D【分析】根據(jù)一次函數(shù)與坐標(biāo)軸的交點(diǎn)得出SKIPIF1<0,確定SKIPIF1<0,再由題意得出當(dāng)SKIPIF1<0的延長線恰好垂直SKIPIF1<0時(shí),垂足為點(diǎn)E,此時(shí)SKIPIF1<0即為三角形的最大高,連接SKIPIF1<0,利用勾股定理求解即可.【詳解】解:∵直線SKIPIF1<0與x軸、y軸分別交于A、B兩點(diǎn),∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0的底邊SKIPIF1<0為定值,∴使得SKIPIF1<0底邊上的高最大時(shí),面積最大,點(diǎn)P為SKIPIF1<0的中點(diǎn),當(dāng)SKIPIF1<0的延長線恰好垂直SKIPIF1<0時(shí),垂足為點(diǎn)E,此時(shí)SKIPIF1<0即為三角形的最大高,連接SKIPIF1<0,

∵SKIPIF1<0,SKIPIF1<0的半徑為1,∴SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選:D.【點(diǎn)睛】題目主要考查一次函數(shù)的應(yīng)用及勾股定理解三角形,垂徑定理的應(yīng)用,理解題意,確定出高的最大值是解題關(guān)鍵.7.(2023·河北·統(tǒng)考中考真題)如圖是一種軌道示意圖,其中SKIPIF1<0和SKIPIF1<0均為半圓,點(diǎn)M,A,C,N依次在同一直線上,且SKIPIF1<0.現(xiàn)有兩個(gè)機(jī)器人(看成點(diǎn))分別從M,N兩點(diǎn)同時(shí)出發(fā),沿著軌道以大小相同的速度勻速移動(dòng),其路線分別為SKIPIF1<0和SKIPIF1<0.若移動(dòng)時(shí)間為x,兩個(gè)機(jī)器人之間距離為y,則y與x關(guān)系的圖象大致是(

A.

B.

C.

D.

【答案】D【分析】設(shè)圓的半徑為R,根據(jù)機(jī)器人移動(dòng)時(shí)最開始的距離為SKIPIF1<0,之后同時(shí)到達(dá)點(diǎn)A,C,兩個(gè)機(jī)器人之間的距離y越來越小,當(dāng)兩個(gè)機(jī)器人分別沿SKIPIF1<0和SKIPIF1<0移動(dòng)時(shí),此時(shí)兩個(gè)機(jī)器人之間的距離是直徑SKIPIF1<0,當(dāng)機(jī)器人分別沿SKIPIF1<0和SKIPIF1<0移動(dòng)時(shí),此時(shí)兩個(gè)機(jī)器人之間的距離越來越大.【詳解】解:由題意可得:機(jī)器人(看成點(diǎn))分別從M,N兩點(diǎn)同時(shí)出發(fā),設(shè)圓的半徑為R,∴兩個(gè)機(jī)器人最初的距離是SKIPIF1<0,∵兩個(gè)人機(jī)器人速度相同,∴分別同時(shí)到達(dá)點(diǎn)A,C,∴兩個(gè)機(jī)器人之間的距離y越來越小,故排除A,C;當(dāng)兩個(gè)機(jī)器人分別沿SKIPIF1<0和SKIPIF1<0移動(dòng)時(shí),此時(shí)兩個(gè)機(jī)器人之間的距離是直徑SKIPIF1<0,保持不變,當(dāng)機(jī)器人分別沿SKIPIF1<0和SKIPIF1<0移動(dòng)時(shí),此時(shí)兩個(gè)機(jī)器人之間的距離越來越大,故排除C,故選:D.【點(diǎn)睛】本題考查動(dòng)點(diǎn)函數(shù)圖像,找到運(yùn)動(dòng)時(shí)的特殊點(diǎn)用排除法是關(guān)鍵.8.(2023·江蘇蘇州·統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系中,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,以SKIPIF1<0為邊作矩形SKIPIF1<0.動(dòng)點(diǎn)SKIPIF1<0分別從點(diǎn)SKIPIF1<0同時(shí)出發(fā),以每秒1個(gè)單位長度的速度沿SKIPIF1<0向終點(diǎn)SKIPIF1<0移動(dòng).當(dāng)移動(dòng)時(shí)間為4秒時(shí),SKIPIF1<0的值為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意,得出SKIPIF1<0,SKIPIF1<0,勾股定理求得SKIPIF1<0,SKIPIF1<0,即可求解.【詳解】解:連接SKIPIF1<0、SKIPIF1<0

∵點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,以SKIPIF1<0為邊作矩形SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,SKIPIF1<0依題意,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0故選:D.【點(diǎn)睛】本題考查了坐標(biāo)與圖形,勾股定理求兩點(diǎn)坐標(biāo)距離,矩形的性質(zhì),求得SKIPIF1<0的坐標(biāo)是解題的關(guān)鍵.9.(2023·山東濱州·統(tǒng)考中考真題)已知點(diǎn)SKIPIF1<0是等邊SKIPIF1<0的邊SKIPIF1<0上的一點(diǎn),若SKIPIF1<0,則在以線段SKIPIF1<0為邊的三角形中,最小內(nèi)角的大小為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】將SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,可得以線段SKIPIF1<0為邊的三角形,即SKIPIF1<0,最小的銳角為SKIPIF1<0,根據(jù)鄰補(bǔ)角以及旋轉(zhuǎn)的性質(zhì)得出SKIPIF1<0,進(jìn)而即可求解.【詳解】解:如圖所示,將SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,

∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,∴以線段SKIPIF1<0為邊的三角形,即SKIPIF1<0,最小的銳角為SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0,故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì)與判定,熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.10.(2023·甘肅武威·統(tǒng)考中考真題)如圖1,正方形SKIPIF1<0的邊長為4,SKIPIF1<0為SKIPIF1<0邊的中點(diǎn).動(dòng)點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā)沿SKIPIF1<0勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)SKIPIF1<0時(shí)停止.設(shè)點(diǎn)SKIPIF1<0的運(yùn)動(dòng)路程為SKIPIF1<0,線段SKIPIF1<0的長為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的函數(shù)圖象如圖2所示,則點(diǎn)SKIPIF1<0的坐標(biāo)為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】證明SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則當(dāng)P與A,B重合時(shí),SKIPIF1<0最長,此時(shí)SKIPIF1<0,而運(yùn)動(dòng)路程為0或4,從而可得答案.【詳解】解:∵正方形SKIPIF1<0的邊長為4,SKIPIF1<0為SKIPIF1<0邊的中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)P與A,B重合時(shí),SKIPIF1<0最長,此時(shí)SKIPIF1<0,運(yùn)動(dòng)路程為0或4,結(jié)合函數(shù)圖象可得SKIPIF1<0,故選:C.【點(diǎn)睛】本題考查的是從函數(shù)圖象中獲取信息,正方形的性質(zhì),勾股定理的應(yīng)用,理解題意,確定函數(shù)圖象上橫縱坐標(biāo)的含義是解本題的關(guān)鍵.11.(2023·浙江紹興·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0是邊SKIPIF1<0上的點(diǎn)(不與點(diǎn)SKIPIF1<0重合).過點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0;過點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0.SKIPIF1<0是線段SKIPIF1<0上的點(diǎn),SKIPIF1<0;SKIPIF1<0是線段SKIPIF1<0上的點(diǎn),SKIPIF1<0.若已知SKIPIF1<0的面積,則一定能求出(

A.SKIPIF1<0的面積 B.SKIPIF1<0的面積C.SKIPIF1<0的面積 D.SKIPIF1<0的面積【答案】D【分析】如圖所示,連接SKIPIF1<0,證明SKIPIF1<0,得出SKIPIF1<0,由已知得出SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,進(jìn)而得出SKIPIF1<0,可得SKIPIF1<0,結(jié)合題意得出SKIPIF1<0,即可求解.【詳解】解:如圖所示,連接SKIPIF1<0,

∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.故選:D.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)與判定,證明SKIPIF1<0是解題的關(guān)鍵.12.(2023·安徽·統(tǒng)考中考真題)如圖,SKIPIF1<0是線段SKIPIF1<0上一點(diǎn),SKIPIF1<0和SKIPIF1<0是位于直線SKIPIF1<0同側(cè)的兩個(gè)等邊三角形,點(diǎn)SKIPIF1<0分別是SKIPIF1<0的中點(diǎn).若SKIPIF1<0,則下列結(jié)論錯(cuò)誤的是(

A.SKIPIF1<0的最小值為SKIPIF1<0 B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0周長的最小值為6 D.四邊形SKIPIF1<0面積的最小值為SKIPIF1<0【答案】A【分析】延長SKIPIF1<0,則SKIPIF1<0是等邊三角形,觀察選項(xiàng)都是求最小時(shí),進(jìn)而得出當(dāng)SKIPIF1<0點(diǎn)與SKIPIF1<0重合時(shí),則SKIPIF1<0三點(diǎn)共線,各項(xiàng)都取得最小值,得出B,C,D選項(xiàng)正確,即可求解.【詳解】解:如圖所示,

延長SKIPIF1<0,依題意SKIPIF1<0∴SKIPIF1<0是等邊三角形,∵SKIPIF1<0是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,則SKIPIF1<0為SKIPIF1<0的中點(diǎn)如圖所示,

設(shè)SKIPIF1<0的中點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0∴當(dāng)SKIPIF1<0點(diǎn)在SKIPIF1<0上運(yùn)動(dòng)時(shí),SKIPIF1<0在SKIPIF1<0上運(yùn)動(dòng),當(dāng)SKIPIF1<0點(diǎn)與SKIPIF1<0重合時(shí),即SKIPIF1<0,則SKIPIF1<0三點(diǎn)共線,SKIPIF1<0取得最小值,此時(shí)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0到SKIPIF1<0的距離相等,則SKIPIF1<0,此時(shí)SKIPIF1<0此時(shí)SKIPIF1<0和SKIPIF1<0的邊長都為2,則SKIPIF1<0最小,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0,或者如圖所示,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱點(diǎn)SKIPIF1<0,則SKIPIF1<0,則當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0

此時(shí)SKIPIF1<0故A選項(xiàng)錯(cuò)誤,根據(jù)題意可得SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0最小,此時(shí)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,故B選項(xiàng)正確;SKIPIF1<0周長等于SKIPIF1<0,即當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0周長最小,如圖所示,作平行四邊形SKIPIF1<0,連接SKIPIF1<0,

∵SKIPIF1<0,則SKIPIF1<0如圖,延長SKIPIF1<0,SKIPIF1<0,交于點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0是直角三角形,

在SKIPIF1<0中,SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最短,SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0周長的最小值為SKIPIF1<0,故C選項(xiàng)正確;∵SKIPIF1<0∴四邊形SKIPIF1<0面積等于SKIPIF1<0

∴當(dāng)SKIPIF1<0的面積為0時(shí),取得最小值,此時(shí),SKIPIF1<0重合,SKIPIF1<0重合∴四邊形SKIPIF1<0面積的最小值為SKIPIF1<0SKIPIF1<0,故D選項(xiàng)正確,故選:A.【點(diǎn)睛】本題考查了解直角三角形,等邊三角形的性質(zhì),勾股定理,熟練掌握等邊三角形的性質(zhì),得出當(dāng)SKIPIF1<0點(diǎn)與SKIPIF1<0重合時(shí)得出最小值是解題的關(guān)鍵.二、填空題13.(2023·四川達(dá)州·統(tǒng)考中考真題)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,在邊SKIPIF1<0上有一點(diǎn)SKIPIF1<0,且SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】如圖,作SKIPIF1<0的外接圓,圓心為SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的垂直平分線于SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,以SKIPIF1<0為圓心,SKIPIF1<0為半徑作圓;結(jié)合圓周角定理及垂徑定理易得SKIPIF1<0,再通過圓周角定理、垂直及垂直平分線的性質(zhì)、三角形內(nèi)角和定理易得SKIPIF1<0,從而易證SKIPIF1<0可得SKIPIF1<0即SKIPIF1<0勾股定理即可求得SKIPIF1<0在SKIPIF1<0中由三角形三邊關(guān)系SKIPIF1<0即可求解.【詳解】解:如圖,作SKIPIF1<0的外接圓,圓心為SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的垂直平分線于SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,以SKIPIF1<0為圓心,SKIPIF1<0為半徑作圓;SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的外接圓的圓心,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,由作圖可知SKIPIF1<0,SKIPIF1<0在SKIPIF1<0的垂直平分線上,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0的外接圓的圓心,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0最小值為SKIPIF1<0,故答案為:SKIPIF1<0.

【點(diǎn)睛】本題考查了圓周角定理,垂徑定理,勾股定理解直角三角形,相似三角形的判定和性質(zhì),垂直平分線的性質(zhì),SKIPIF1<0角所對(duì)的直角邊等于斜邊的一半,三角形三邊之間的關(guān)系;解題的關(guān)鍵是結(jié)合SKIPIF1<0的外接圓構(gòu)造相似三角形.14.(2023·浙江寧波·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,E為SKIPIF1<0邊上一點(diǎn),以SKIPIF1<0為直徑的半圓O與SKIPIF1<0相切于點(diǎn)D,連接SKIPIF1<0,SKIPIF1<0.P是SKIPIF1<0邊上的動(dòng)點(diǎn),當(dāng)SKIPIF1<0為等腰三角形時(shí),SKIPIF1<0的長為_____________.

【答案】SKIPIF1<0或SKIPIF1<0【分析】連接SKIPIF1<0,勾股定理求出半徑,平行線分線段成比例,求出SKIPIF1<0的長,勾股定理求出SKIPIF1<0和SKIPIF1<0的長,分SKIPIF1<0和SKIPIF1<0兩種情況進(jìn)行求解即可.【詳解】解:連接SKIPIF1<0,

∵以SKIPIF1<0為直徑的半圓O與SKIPIF1<0相切于點(diǎn)D,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中:SKIPIF1<0,即:SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0為等腰三角形,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),∵SKIPIF1<0,∴點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合,∴SKIPIF1<0,

不存在SKIPIF1<0的情況;綜上:SKIPIF1<0的長為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查切線的性質(zhì),平行線分線段成比例,勾股定理,等腰三角形的定義.熟練掌握切線的性質(zhì),等腰三角形的定義,確定點(diǎn)SKIPIF1<0的位置,是解題的關(guān)鍵.15.(2023·四川涼山·統(tǒng)考中考真題)如圖,邊長為2的等邊SKIPIF1<0的兩個(gè)頂點(diǎn)SKIPIF1<0分別在兩條射線SKIPIF1<0上滑動(dòng),若SKIPIF1<0,則SKIPIF1<0的最大值是_________.

【答案】SKIPIF1<0【分析】如圖所示,取SKIPIF1<0的中點(diǎn)D,連接SKIPIF1<0,先根據(jù)等邊三角形的性質(zhì)和勾股定理求出SKIPIF1<0,再根據(jù)直角三角形的性質(zhì)得到SKIPIF1<0,再由SKIPIF1<0可得當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0有最大值,最大值為SKIPIF1<0.【詳解】解:如圖所示,取SKIPIF1<0的中點(diǎn)D,連接SKIPIF1<0,∵SKIPIF1<0是邊長為2的等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0有最大值,最大值為SKIPIF1<0,故答案為:SKIPIF1<0.

【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),勾股定理,直角三角形斜邊上的中線的性質(zhì)等等,正確作出輔助線確定當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0有最大值是解題的關(guān)鍵.16.(2023·四川瀘州·統(tǒng)考中考真題)如圖,SKIPIF1<0,SKIPIF1<0是正方形SKIPIF1<0的邊SKIPIF1<0的三等分點(diǎn),SKIPIF1<0是對(duì)角線SKIPIF1<0上的動(dòng)點(diǎn),當(dāng)SKIPIF1<0取得最小值時(shí),SKIPIF1<0的值是___________.

【答案】SKIPIF1<0【分析】作點(diǎn)F關(guān)于SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,此時(shí)SKIPIF1<0取得最小值,過點(diǎn)SKIPIF1<0作SKIPIF1<0的垂線段,交SKIPIF1<0于點(diǎn)K,根據(jù)題意可知點(diǎn)SKIPIF1<0落在SKIPIF1<0上,設(shè)正方形的邊長為SKIPIF1<0,求得SKIPIF1<0的邊長,證明SKIPIF1<0,可得SKIPIF1<0,即可解答.【詳解】解:作點(diǎn)F關(guān)于SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0的垂線段,交SKIPIF1<0于點(diǎn)K,

由題意得:此時(shí)SKIPIF1<0落在SKIPIF1<0上,且根據(jù)對(duì)稱的性質(zhì),當(dāng)P點(diǎn)與SKIPIF1<0重合時(shí)SKIPIF1<0取得最小值,設(shè)正方形SKIPIF1<0的邊長為a,則SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,

SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0取得最小值時(shí),SKIPIF1<0的值是為SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了四邊形的最值問題,軸對(duì)稱的性質(zhì),相似三角形的證明與性質(zhì),正方形的性質(zhì),正確畫出輔助線是解題的關(guān)鍵.17.(2023·河南·統(tǒng)考中考真題)矩形SKIPIF1<0中,M為對(duì)角線SKIPIF1<0的中點(diǎn),點(diǎn)N在邊SKIPIF1<0上,且SKIPIF1<0.當(dāng)以點(diǎn)D,M,N為頂點(diǎn)的三角形是直角三角形時(shí),SKIPIF1<0的長為______.【答案】2或SKIPIF1<0【分析】分兩種情況:當(dāng)SKIPIF1<0時(shí)和當(dāng)SKIPIF1<0時(shí),分別進(jìn)行討論求解即可.【詳解】解:當(dāng)SKIPIF1<0時(shí),

∵四邊形SKIPIF1<0矩形,∴SKIPIF1<0,則SKIPIF1<0,由平行線分線段成比例可得:SKIPIF1<0,又∵M(jìn)為對(duì)角線SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),

∵M(jìn)為對(duì)角線SKIPIF1<0的中點(diǎn),SKIPIF1<0∴SKIPIF1<0為SKIPIF1<0的垂直平分線,∴SKIPIF1<0,∵四邊形SKIPIF1<0矩形,SKIPIF1<0∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,綜上,SKIPIF1<0的長為2或SKIPIF1<0,故答案為:2或SKIPIF1<0.【點(diǎn)睛】本題考查矩形的性質(zhì),平行線分線段成比例,垂直平分線的判定及性質(zhì)等,畫出草圖進(jìn)行分類討論是解決問題的關(guān)鍵.18.(2023·湖南·統(tǒng)考中考真題)如圖,在矩形SKIPIF1<0中,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0在矩形的邊上沿SKIPIF1<0運(yùn)動(dòng).當(dāng)點(diǎn)SKIPIF1<0不與點(diǎn)SKIPIF1<0重合時(shí),將SKIPIF1<0沿SKIPIF1<0對(duì)折,得到SKIPIF1<0,連接SKIPIF1<0,則在點(diǎn)SKIPIF1<0的運(yùn)動(dòng)過程中,線段SKIPIF1<0的最小值為__________.

【答案】SKIPIF1<0【分析】根據(jù)折疊的性質(zhì)得出SKIPIF1<0在SKIPIF1<0為圓心,SKIPIF1<0為半徑的弧上運(yùn)動(dòng),進(jìn)而分類討論當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),當(dāng)SKIPIF1<0在SKIPIF1<0上時(shí),即可求解.【詳解】解:∵在矩形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,如圖所示,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),

∵SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0為圓心,SKIPIF1<0為半徑的弧上運(yùn)動(dòng),當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0最短,此時(shí)SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),如圖所示,

此時(shí)SKIPIF1<0當(dāng)SKIPIF1<0在SKIPIF1<0上時(shí),如圖所示,此時(shí)SKIPIF1<0

綜上所述,SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了矩形與折疊問題,圓外一點(diǎn)到圓上的距離的最值問題,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.19.(2023·廣西·統(tǒng)考中考真題)如圖,在邊長為2的正方形SKIPIF1<0中,E,F(xiàn)分別是SKIPIF1<0上的動(dòng)點(diǎn),M,N分別是SKIPIF1<0的中點(diǎn),則SKIPIF1<0的最大值為______.

【答案】SKIPIF1<0【分析】首先證明出SKIPIF1<0是SKIPIF1<0的中位線,得到SKIPIF1<0,然后由正方形的性質(zhì)和勾股定理得到SKIPIF1<0,證明出當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<0最大,此時(shí)SKIPIF1<0最大,進(jìn)而得到當(dāng)點(diǎn)E和點(diǎn)C重合時(shí),SKIPIF1<0最大,即SKIPIF1<0的長度,最后代入求解即可.【詳解】如圖所示,連接SKIPIF1<0,

∵M(jìn),N分別是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0是SKIPIF1<0的中位線,∴SKIPIF1<0,∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<0最大,此時(shí)SKIPIF1<0最大,∵點(diǎn)E是SKIPIF1<0上的動(dòng)點(diǎn),∴當(dāng)點(diǎn)E和點(diǎn)C重合時(shí),SKIPIF1<0最大,即SKIPIF1<0的長度,∴此時(shí)SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】此題考查了正方形的性質(zhì),三角形中位線的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是熟練掌握以上知識(shí)點(diǎn).20.(2023·山東·統(tǒng)考中考真題)如圖,在四邊形SKIPIF1<0中,SKIPIF1<0,點(diǎn)E在線段SKIPIF1<0上運(yùn)動(dòng),點(diǎn)F在線段SKIPIF1<0上,SKIPIF1<0,則線段SKIPIF1<0的最小值為__________.

【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0的中點(diǎn)為O,以SKIPIF1<0為直徑畫圓,連接SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0的交點(diǎn)為點(diǎn)SKIPIF1<0,證明SKIPIF1<0,可知點(diǎn)F在以SKIPIF1<0為直徑的半圓上運(yùn)動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到SKIPIF1<0與SKIPIF1<0的交點(diǎn)SKIPIF1<0時(shí),線段SKIPIF1<0有最小值,據(jù)此求解即可.【詳解】解:設(shè)SKIPIF1<0的中點(diǎn)為O,以SKIPIF1<0為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論