




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValves
UsingFiniteVolumeMethod
FengZhou1.YuanYuanCui1.LiangLiangWu1.JieYang2.LiLiu3.
Received:16October2014/Accepted:8April2015
ΘTaiwaneseSocietyofBiomedicalEngineering2016
AbstractUnderphysiologicalconditions,theopening
andclosingofthelea?etsofanimplantedarti?cialheartvalve(AHV)affectsthebloodcomponentsandthereforemaycausevariouscomplicationstothepatientsuchashemolysisorplateletactivation.Inthispaper,acomputa-tional?uidmodelispresented.Theregionaldistributionof?owshearstressinanAHVisanalyzedusingcomputa-tional?uiddynamicsandAHVperformanceisevaluatedintermsofthevariationof?owvelocityandpressurewhenbloodpassesthelea?etsintheaorticvalve.TheresultssuggestthatforthedesignofamechanicalAHV,themaximumopeningangleandinternalori?cediametershouldbeincreasedtoimprovethe?uidstructureinterac-tionanddecreasethepossibilityofdamagetobloodcomponents.Finally,the?uidstressdistributionoftheAHVlea?etstructurewascalculatedandanalyzedunderpulsating?owconditions.
1
2
3
4
5
KeyLaboratoryofAdvancedTechnologiesofMaterials,
ChineseEducationMinistry,SchoolofMaterialsScienceandEngineering,SouthwestJiaotongUniversity,
Chengdu610031,China
MechanicalEngineeringSchool,SouthwestJiaotongUniversity,Chengdu610031,China
NationalInstitutefortheControlofPharmaceuticalandBiologicalProducts,Beijing10050,China
LeibnizInstituteforPolymerResearch,MaxBergmannCenterforBiomaterials,01069Dresden,Germany
LawrenceBerkeleyNationalLaboratory,Berkeley,CA94704,USA
publishedonline:10February2016
Keywords:Bilea?etmechanicalvalves.Computational?uiddynamics.Blooddamage
1Introduction
Heartvalvesmaintainunidirectionalblood?owbytheopeningandclosingoftheirleaves,whichdependonthepressuredifferenceonthetwosidesofthevalvelea?ets.Ifanaturalheartvalveisdamagedbyseveredeformityordisease,itshouldbereplacedbyanarti?cialheartvalve(AHV),eithermechanicalorbiological,torecoverbio-logicalfunctionofblood?owtransport.Currently,over55%ofimplantedAHVsaremechanicalvalves[
HYPERLINK\l"bookmark1"
1
].Mechanicalvalvesconsistofmechanicalcomponentswithgoodmechanicalbehaviorandbiocompatibility.Amongthevarioustypesofmechanicalvalve,bilea?etmechanicalvalvesarethemostwidelyappliedclinically.
A?uid–structureinteractionanalysiscomputationmethodhasbeenappliedtoAHVs[
HYPERLINK\l"bookmark2"
2
].DeHartetal.[
HYPERLINK\l"bookmark3"
3
]analyzedthemovementvariationoflea?etswithtimeusinglaserDopplervelocimetryandahigh-speedcamera.Pelliccionietal.[
HYPERLINK\l"bookmark4"
4
]establishedatwo-dimensional(2D)digitalmodeltoanalyzesingle-andbi-lea?etvalvesinaorticpositionusingadiscretelatticeBoltzmannmethod.Zhangetal.[
HYPERLINK\l"bookmark5"
5
]analyzedtheopeningandclosingofabilea?etmechanicalheartvalvewiththe?niteelementmethod(FEM)byapplyingacouplingalgorithmbasedonthearbitraryLagrangian–Eulerian(ALE)method.Zhangetal.[
HYPERLINK\l"bookmark6"
6
]analyzedtherelationshipbetweenavalveanda2D?ow?eldusingANSYSsoftware.Mostarti?cialmechanicalheartvalvedesignsandanalyseshaveadopted2Dmodelsandsteady-state?owinthevalves,newmethodsandmeasurestoimprovethevalvestructurewouldbeenproposed.
②…
Table1Damagethresholdofbloodcomponents[
HYPERLINK\l"bookmark7"
10
–
HYPERLINK\l"bookmark8"
12
]by?uidshearstress
Erythrocytes(dyn/cm2)
500
Leukocytes(dyn/cm2)
300
Bloodplatelets(dyn/cm2)
100–500
Vascularendothelium(dyn/cm2)
400
Thepresentstudyanalyzestheimpactofthevalvestructureonblood?ow,includinghemodynamicaspects.Thedestructionofbloodcomponentsandplateletactiva-tionbytheshearstressgeneratedbythecoupledinteractionbetweenthevalveand?owarediscussed.ThecomputationusestheFEMwithacouplingalgorithmbasedontheALEmethod.
Thebehaviorofblood?owthroughanAHVisrelatedtotheAHVgeometry.The?uidvelocityishighwhenthejetpassesthevalve,whichmaycauseeddiesandinduceahighshearstressintheblood?owregion.Wurzingeretal.[
HYPERLINK\l"bookmark9"
7
]foundthatturbulentstresslevelsof100–1000dyn/cm2canactivateplatelets,andthatthehemolysisthresholdisabove8000dyn/cm2[
HYPERLINK\l"bookmark10"
8
,
HYPERLINK\l"bookmark11"
9
].Krolletal.estimateddamagethresholdsofbloodcomponentsby?uidshearstress.TheirresultsareshowninTable
HYPERLINK\l"bookmark12"
1
.
Inthispaper,avolumemethodisappliedtocharacterizetheblood?ow?eld.The?uiddomainisdiscretizedtogeneratea?niteelementspatiallattice.Inthismethod,differentialequations(e.g.,Navier–Stokesequationandk-εequation)areusedtocontrolvolumeintegration,resultinginasetofdiscreteequationsforanalyzingthe?ow?eldprocess.
2Methods
Whenbloodistransportedthroughanaturalheartvalve(Fig.
HYPERLINK\l"bookmark13"
1
a),the?owiscentral-?eld.Incontrast,blood?owthroughamechanicalbilea?etvalveisthroughthreechannelsandisapproximatelycentral-?eld.Makhijanetal.[
HYPERLINK\l"bookmark14"
13
]consideredthe?uid?owthroughanaturalheartvalvetobeapulsatinglaminar?ow.Experimentsrevealedthatthe?owislaminarintheearlyaccelerationphase[
HYPERLINK\l"bookmark15"
14
],andthusathree-dimensional(3D)numericalsimulationofthe?uid–structureinteractionintheinitialperiodcanbebasedonlaminar?ow.
Inthepresentwork,a25-mmbilea?etmechanicalvalveischosenastheexperimentalmodelbecauseitiscurrentlythemostfrequentlyclinicallyappliedmechanicalheartvalve[
HYPERLINK\l"bookmark16"
15
].Thetwolea?etsarelinkedtothevalveringbyapivotandbutter?ypit.Thelea?etsarerotationallyopenedbythebloodstream?owingthroughthevalve.Aschematicdiagramoftheblood?owthroughtheAHVisshowninFig.
HYPERLINK\l"bookmark13"
1
b.
Theinteractionofthebloodwiththelea?etsandori?ceoftheAHVstructurewassimulatedusingtheFEM.TheprocessisshownschematicallyinFig.
HYPERLINK\l"bookmark17"
2
.Meshesweregeneratedusingacomputational?uiddynamics(CFD)pre-treatmentprograminintegratedcomputerengineeringandmanufacturing(ICEM)andFluentsoftware(AnalysisInc.),combinedwiththeFEM.Thevalvemodelwasthenanalyzed.
Whenthevalveisfullyopened,blood?owsthroughtheori?cealongthelea?ets.Thelea?etscanimpedetheblood?owthroughthevalveinthevalval?eld,increasingthespeedofthejetstream.Theinteractionbetweentheblood?owandthevalvecausesahighshearstress,whichincreasesthepossibilityofplateletactivationorredbloodcelldamage[
HYPERLINK\l"bookmark18"
11
,
HYPERLINK\l"bookmark19"
16
–
HYPERLINK\l"bookmark20"
18
].
2.1ModelingDesignandSimulation
Fluid?owcontrolbyanAHVisshownschematicallyinFig.
HYPERLINK\l"bookmark13"
1
c,d.Thevalvelea?etsareopenedbytheblood?owandclosedbycouplingforces.Theforcecalculationpro-cessisasfollows.Whenblood?owsthroughthevalve,thelea?etsareopened,andwhenbloodre?uxes,theyarequicklyclosed.Theblood?owisregardedassteadywhenthevalveisfullyopened,asitisassumedthatthe?owconditions,suchasvelocity,pressure,andtemperature,areconstant.Adoptingthe?nitevolumemethod,thevelocity?eldcanbesolvedusingmomentumequations,thepres-sure?eldcanbesolvedusingcontinuityandmomentumequations,andtimeintegrationcanbecarriedoutusingtheimplicitmomentumequationandthepressureequation.
A3DgeometricmodelofamechanicalheartvalveattheaorticpositionwasconstructedasshowninFig.
HYPERLINK\l"bookmark21"
3
.
Computersimulationwasperformedunderpulsatingblood?owconditions,withthein?owsetas4L/min[
HYPERLINK\l"bookmark22"
19
].Theinteractionbetweenthevalveandtheblood?owwascalculatedandanalyzedforanopenvalve.
Inthevalvesystem,blood?owchangesperiodically.Thevalvemotionisdividedintothreephases[
HYPERLINK\l"bookmark19"
16
],asshowninFig.
HYPERLINK\l"bookmark21"
3
a.InphaseI,0<tB0.06s,thevalveisclosed;inphaseII,0.06s<tB0.35s,thevalveisopen(includesopeningandclosingofthevalve);inphaseIII,0.35s<tB0.8s,thevalveisclosed.Thevalveisfullyopenattime0.09s,andthemaximumvelocityreaches0.5m/sat0.14s.Undertheconditionofnore?uxinthethirdphase,theexperimentwasmainlycarriedoutfortheperiod0.12–0.30s(AHVfullyopened).
Thebasicassumptionsofthemodelareasfollows:(i)theblood?uidisaviscous,incompressible,isothermalhomogeneousNewtonian?uid;(ii)deformationoftissuearoundtheAHVisignored,andfrictionlessinterfacesbetweenthe?uidandsolidareassumed;(iii)thereisno?uidreturnattheoutputend;(iv)thetemperatureis
②…
AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValvesUsingFiniteVolumeMethod
②…
Fig.1Schematicdiagramofvalve?ow?eldandmodel.aNaturalvalve?ow?eld,bbilea?etmechanicalvalve?ow?eld,cmechanicalvalveinstalledataorticposition,dandAHVinopenedandclosedcon?gurations
Fig.2Numericalsimulation
process.1CFDprocess,2FEM
operation,and3numerical
software
constant;(v)gravitationalforceisneglected.Accordingtotheaboveassumptions,laminarsteady-state?owisselec-tedonthein?owsideinthecomputation.
A3DmodeloftheAHVisshowninFig.
HYPERLINK\l"bookmark21"
3
bandde?nedinTable
HYPERLINK\l"bookmark23"
2
.Theexperimentalconditionsweresetasfol-lows.Thediameterdoftheinletsideclosetotheheart
F.Zhouetal.
Fig.33DcomputationalmodelofphysicalstructureofaortacontainingAHV.aAorticpulsating?owvelocityimposedatin?owsection[
HYPERLINK\l"bookmark19"
16
],bparametersettings,andcboundaryconditions
ventricleis22.5mm.Thein?owconditionissetasu=0.32m/s,whereuisthein?owvelocity.Theblooddensity(p)is1.056g/cm3.Thekineticviscosity(g)ofbloodis3.5cpat37。C[
HYPERLINK\l"bookmark20"
18
],andtheReynoldsnumber(Re)is3186,whichisde?nedbyRe=udp/g.Reislocatedinthesubcriticalregion(thecriticalReynoldsnumberrangeisgenerally2100–4000inatube).Vortexturbulencecanforminthelea?etwake.Fortheoutletboundarycondition,theinitialoutletpressurePin=0Pa.Ano-slipboundaryconditionisimposedfortheinteractionbetweentheblood?owandthevalve.Theentranceboundaryconditionisgivenbytheinitialspeed;theboundaryconditionofthepressureontheexitsideissetaszero(Pout=0Pa)andthereisnoreturnofthe?uid.
Structuralboundaryconditionsweresetasfollows.Thereisnotranslationalmotionbetweenthepivotandlea?ets.Theboundarylayersbetweenthe?owandthevalveareassumedtohavenon-slidingmeshboundaryconditions[
HYPERLINK\l"bookmark24"
22
].
Meshgeneration:ThecomputationalmodelusestheALEmethod,whichreliesonthere-generationofa
Table2PhysicalparametersforFig.
HYPERLINK\l"bookmark21"
3
b
Position
Size(mm)
Position
Size(mm)
Ventricleend
D1[
HYPERLINK\l"bookmark25"
20
]
Lea?etthickness
0.8
Valvularsinus
D2[
HYPERLINK\l"bookmark25"
20
]
L2
150
Arterialend
D3[
HYPERLINK\l"bookmark25"
20
]
L3
80
L1
42
Openingangle
θ[
HYPERLINK\l"bookmark26"
21
]
continuouslydeformingmeshcapableofmaintaininggoodmeshquality.Themeshroughnessissetbythetypeandsizeofthegrid.Thecomplex?uidblocksaremeshedbytetrahedralandtriangulargrids.
Toincreasethesolutionaccuracyandreducecalculationtime,the?owmodelwasdividedmainlyintohexahedral,bothforthecylindrical?uidrunnerandtransitionalcellsofthemodel(Fig.
HYPERLINK\l"bookmark27"
4
a).Intheannularregions,the?ow?eldwasfurthersubdividedintotetrahedralelements.Fromgridqualitydetection,alltheelementshadmaximumskewnesslessofthan0.8.Thesmallertheskewnessvalue,thebetteristhemeshquality,andthusthecalculationsconvergemoreeasily.Thecheckedmeshqualityshouldbeaccept-ableto?niteelementcalculation[
HYPERLINK\l"bookmark28"
23
].Finally,thecellmodelwastranslatedintopolyhedralmeshgridsinthecomputationaldomaintoincreasecomputationalef?-ciency.Themeshconsistedofthreeblockswithatotalof59105cells.ThemeshmodelisshowninFig.
HYPERLINK\l"bookmark27"
4
.
The?ow?eldoftheAHVatcompletelyopenstateswasanalyzed.Theinteractionforceofthe?owonthebloodcomponentsinthecompletelyopenconditionwasevalu-ated.Thetransvalvularpressureandthevelocityofthe?owwereinvestigated,andthetransient?ow?eldwasanalyzedforanentirelyopenedvalve(Fig.
HYPERLINK\l"bookmark27"
4
b).Thevalveperformancewasevaluatedthrough?ow?eldanalysistodeterminetheinteractionforceonbloodcomponents.
Geetal.[
HYPERLINK\l"bookmark29"
24
]foundthattheunsteadyReynolds-aver-agedNavier–Stokes(URANS)equationsaresuitablefordetached-eddysimulation.Therefore,URANSisadoptedforexperimentalsimulation,andatwo-order-accuracyinthek-εequationisapplied,wherek,theturbulentkineticenergy,equals5.234910-4m2/s2;andtheturbulentdis-sipationrateεequals8.517910-4m2/s3.Pulsating?owisselectedonthein?owsideinthecomputation.Thesimu-lationcomputationadoptsaweakcouplingmethodtoanalyzetheinteractionsbetweentheAHVandblood?ow.
3ResultsandDiscussion
3.1FluidVelocityFieldDistribution
Figure
HYPERLINK\l"bookmark30"
5
showsthe?owvelocitycontoursandstreamlinesexpressingtheforward?owinthevelocity?eld.Thevalval
②…
AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValvesUsingFiniteVolumeMethod
Fig.4Computationalmeshfor
simulation(polyhedralmesh
grids)
?eldconsistsofaturbulentregion,aneddyzone,andarecirculationzone.Thevelocityisobviouslygreaterbehindthevalve,uptoamaximumvelocityof0.59m/sandrangingfromtwicetothreetimestheinitialvelocity.Thedownstream?owisrelativelysymmetric.Inthemiddlesectionofthe?owstream,aturbulent?owregionisgen-erated,whicheasilyformsazonewithhighshearstressturbulenceastheReynoldsshearstress(RSS)[
HYPERLINK\l"bookmark31"
25
].RSSisanimportantfactorintheformationofbloodhemolysisandanirreversibleaggregationofplatelets.Inthewakeofthelea?ets,vorticesappearnearthephysiologicsinuses.Thesevorticespushblood?owdownwardtothecentralregion.Astheventriclecontracts,theaorticsinusbecomesthemainlyimpactingpointofblood?ow,whichthenturnsrightintotheaorticarch[
HYPERLINK\l"bookmark32"
26
].
3.2WallShearStress
FlowshearstressisanimportantcharacteristicforthehemodynamicsofAHVs.Figure
HYPERLINK\l"bookmark33"
6
showsthepressuredistributioninthe?uid?eld,displayingtheabsolutevalueoftheZ-directionshearstressinthe?ow?eld.
Theshearstressisexpressedasτ=μ(du/dz)[
HYPERLINK\l"bookmark34"
27
].The?owstatewasanalyzedfortheheartvalveatthemax-imumopeningangle.ThemaximumRSSoccursinanarrowchannel,nearthelea?etpivotpartandattheedgesofthevalve.
Yoganathanetal.[
HYPERLINK\l"bookmark35"
28
]foundthatashearstressof100–500dyn/cm2greatlyenhancestheabilityofplateletstoaggregate,furtherleadingtothrombosisanddirectlyendangeringthepatient’slife.Additionally,Oosterbaanetal.[
HYPERLINK\l"bookmark36"
29
]reportedthatachangeofwallshearstresscanin?uencethegrowthofsurroundingtissuecells.Figure
HYPERLINK\l"bookmark33"
6
showsthatthewallshearstressofvalvalpivotandwallpositionissomewhatgreaterthanelsewhere,withamax-imumvalueabove16Pa(160dyn/cm2),whichmaytrig-gerplateletactivation[
HYPERLINK\l"bookmark37"
30
,
HYPERLINK\l"bookmark38"
31
].Moreover,ahighvelocitygradientmaybegeneratedbetweenthere?uxandtheswirl.
3.3ComparisonofValveDesignsBasedonFlowFieldCalculations
Tooptimizetheparametersofthestructureandreducethemaximumtransvalvularpressuredifference(TPD),various
②…
F.Zhouetal.
②…
Fig.5Flowvelocitycontourandstreamlinesinvalve?ow?eld.aVelocity(m/s)cloudofforward?owforfullyopenedbilea?etvalveandbskeletondiagramof3D?owvelocitystreamlines
Fig.6X–Ysection(Z-axisdirection,Fig.
HYPERLINK\l"bookmark27"
4
b)wallshearstress(Pa,1dyn/cm2=0.1Pa)
maximumopeninganglesandannularcalibersofthevalveswerecompared.
Figure
HYPERLINK\l"bookmark39"
7
showsthevelocitydistributionatmaximumopeninganglesθ=80。,85。,and90。.ResultsfortheTPDatvariousmaximumopeningangles,atalocation2.5timesthevalveori?cediameterbetweenthefrontandbackofthevalveori?ce[
HYPERLINK\l"bookmark40"
32
],areshowninFig.
HYPERLINK\l"bookmark39"
7
b.Theresultsrevealthatincreasingthemaximumopeninganglefrom80。to
90。decreasedtheaveragepressuredifferenceΔPacrossthevalvesigni?cantly.Theaveragepressuredifferencedecreaseswithincreasingmaximumopeningangle.
TheTPDandthevelocitydistributionforori?ceinternaldiametersof20.4mm(St.JudeMedicalInc.valvemodel),22.5mm(intermediatediameter),and23.4mm(ON-Xvalvemodel)wereanalyzedforamaximumopeningangleof85。.
AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValvesUsingFiniteVolumeMethod
Fig.7Comparisonof
propertiesofvalvular?ow
undervariousmaximum
openingangles.aFlowvelocity
states(m/s)andbtransvalvular
pressuredifference(Pa)
Figure
HYPERLINK\l"bookmark41"
8
showsthatthedifferencesinthe?owvelocity?elddecreasedwithincreasinginternalvalvediameter.Figure
HYPERLINK\l"bookmark41"
8
bshowstheeffectofinternalvalvediameterontheaveragedifferentialpressure.Whentheinternaldiam-eterincreasedfrom20.4to23.4mm,theaveragepressuredifferenceΔPdecreasedfrom109to52Pa.
Theseresultsindicatethathighermaximumopeningangleandinternalori?cediameterarebene?cialforloweraveragepressuredifferenceandthusalsoforlowershearstressintheblood?ow,andthusbene?cialfordecreasingthepossibilityofdamagetobloodcomponents.
4TransientPulsatingFlow
UsingtheFEM,thedragofthebilea?etAHVstructurewascalculatedandanalyzedunderpulsating?owconditions.Thein?owpeakvelocitywas0.5m/s,thelea?etthicknesswas0.8mm,andthemaximumopeninganglewas85。.
Figure
HYPERLINK\l"bookmark42"
9
ashowsthetransientvelocitydistributioninthe?ow?eldforthreetimepoints:atthehighestin?ow
velocity(0.59m/s)(I),duringthemiddleperiod,whenthe?owvelocitydistributionofthecurvedlea?et?uid?ow?eldisuniform(II),andwhenthevalvebeginstoclose(maximum?owvelocityis0.32m/s)(III).
The?owvorticityofthebilea?etAHVwascalculatedandanalyzedinthetransient?ow?eld.TheresultsareshowninFig.
HYPERLINK\l"bookmark42"
9
b.Whentheinlet?owvelocityreachesthepeakofthepulsating?ow(0.5m/s)at0.15s,thevorticitydistributionismainlyonthelea?etsandannulussurface,withthemaximumvalueatthefrontofthelea?ets.Thiscomputingresultwillhelptoimproveblood?owcharacterandreducetheimpactofhighshearstressonbloodcom-ponentsbyeddyformationinthevalve?ow?eld.
5ComparisonBetweenExperimentalandComputationalData
Table
HYPERLINK\l"bookmark43"
3
showsacomparisonoftheexperimentalresultsforthemaximumopeningangleandtherelatedeffectiveopenarea(EOA)forvariousbilea?etmechanicalheart
②…
Fig.8Comparisonof
propertiesofvalvular?ow
undervariousinternalori?ce
diameters.aFlowvelocity
states(m/s)andbtransvalvular
pressuredifference(Pa)
valves,withEOA=Q/(44.39ΔP)(whereQistheblood?owthroughthevalveandΔPistheaverageTPD).AhigherEOAisbene?cialfordecreasingtheTPD[
HYPERLINK\l"bookmark44"
33
].Table
HYPERLINK\l"bookmark43"
3
datasupportthesimulationcomputationresultsdeducedfromFig.
HYPERLINK\l"bookmark41"
8
,eventhoughdifferentbilea?etmechanicalheartvalvestructuresmayimpacttheblood?owbehavior.
Table
HYPERLINK\l"bookmark43"
3
showstheinvitrohemodynamicexperimentalresultsforvariousannulusinnerdiametersforAHVsprovidedbySt.JudeMedicalInc.
HYPERLINK\l"bookmark45"
[39
].TheseresultsindicatethatincreasingtheannulusinnersizeincreasestheEOAandreducestheaveragetransvalvularpressure.Thus,thesedatafurthersupportthesimulationresultsofFig.
HYPERLINK\l"bookmark41"
8
.
TheexperimentalresultslistedinTables
HYPERLINK\l"bookmark43"
3
and
HYPERLINK\l"bookmark46"
4
showthatthesimulationcomputationinthisworkisreliable.Theresultsnotonlyrevealtendenciesinhemodynamicbehavior,asshowninFigs.
HYPERLINK\l"bookmark39"
7
and
HYPERLINK\l"bookmark41"
8
,butalsoindicatethatattentionshouldbepaidtospeci?cgeometricpoints,suchasthepeakpositioninFig.
HYPERLINK\l"bookmark33"
6
andthesmalledgeareashowninFig.
HYPERLINK\l"bookmark42"
9
b(pointA).
6Conclusion
Thisstudyinvestigateda3Dnumericalmodeltoanalyzethe?ow?eldofabilea?etvalveatthemaximumopeningangle.Theformationanddistributionofthe?uid?ow,includingthe?uidtrajectory,velocity,pressure,shearstress,andstresseddy,wereanalyzedforsteady-state?owandpulsating?owconditions.Theresultsshowthatwhenthevalveisunderjetconditions,the?owisclosetoasubcriticalturbulentstateandvorticesforminthelea?etwake.Thesinuscanslowthe?owvelocity,andthelea?etsintroduceaminorshearforceinthe?ow?eld.Thereisagreatershearstressatthepivotposition.
Thevalvularhemodynamicperformanceatthemaxi-mumvalveopeninganglewasanalyzedusingtheFEMunderbothsteadyandthepulsating?owconditions.Finally,themaximumopeningangleandannulusdiameterrangewereinvestigated.Somedetailedvalvularhemody-namicperformancecharacteristics,includingthe?owpatternandtheexact?owpressureandshearstressdis-tribution,werealsocomputedandanalyzed.
②…
AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValvesUsingFiniteVolumeMethod
Fig.9Propertiesofvalvular
?owintransient?ow?eld.
aTransientvelocity?ow?eldin
fullyopenpositionatstartof
closingphaseandbtransient
vorticitydiagramat0.15s
Table3Valvularhemodynamicparametersatvariousmaximumopeningangles[
HYPERLINK\l"bookmark28"
23
,
HYPERLINK\l"bookmark47"
34
–
HYPERLINK\l"bookmark48"
38
]
Bilea?etvalve
Maximumopeningangle(。)
EOA(cm2)
CarboMedics-25
78
0.79
JiuLing-25
81
1.41
St.Jude-25
85
2.1
ON-X-25
90
2.4
The?ow?eldofthebilea?etvalvehasauniformdis-tributionintheaorticposition,whichminimizestheresistanceofthevalvetothe?ow?eld.Inordertooptimizethevalvestructure,thetransprostheticdifferenceinshearstressshouldbereducedbyrationaldesignofthevalvelea?etpro?leandstructure,suchasincreasingthemaxi-mumopeningangleandinternalori?cediameter,which
Table4Hemodynamicparametersforvariousvalvularmodels[
HYPERLINK\l"bookmark49"
40
,
HYPERLINK\l"bookmark50"
41
]
AHV
Model(mm)
Annulusinnerdiameter(mm)
Averagetransvalvularpressure(mmHg)
EOA(cm2)
St.JudeMedical
21
23
25
27
16.7
18.67
20.5
22.6
17±5.7
17±7.6
13±6.9
9±2.4
1.4±0.21
1.6±0.32
2.1±0.64
2.6±0.33
②…
F.Zhouetal.
canleadtoamoreuniform?ow?eldanddecreasethepossibilityofdamagetobloodcomponents.
References
1.Vongpatanasin,W.,Hillis,L.D.,&Lange,R.A.(1996).Medicalprogress—Prostheticheartvalves.NewEnglandJournalofMedicine,335,407–416.
2.Yeh,H.H.,Grecov,D.,&Karri,S.(2014).Computationalmodellingofbilea?etmechanicalvalvesusing?uid–structureinteractionapproach.JournalofMedicalandBiologicalEngi-neering,34,482–486.
3.DeHart,J.,Peters,G.W.M.,&Schreurs,P.J.G.(2000).Atwo-dimensional?uid–structureinteractionmodeloftheaorticvalue.JournalofBiomechanics,33,1079–1088.
4.Pelliccioni,O.,Cerrolaza,M.,&Sur
EQ\*jc3\*hps16\o\al(\s\up0(′),o)
s,R.(2008).Abio?uiddynamiccomputercodeusingthegenerallatticeBoltzmannequation.AdvancesinSoftwareEngineering,39,593–611.
5.Jianhai,Z.,Dapeng,C.,&Shengquan,Z.(1996).ALE?niteelementanalysisoftheopeningandclosingprocessofthearti-?cialmechanicalvalve.AppliedMathematicsandMechanics,17,403–412.
6.Zhang,L.R.(2007).Asteadynumericalanalysisofa?uid–solidcouplingmodelinaorticarti?cialbilea?etheartvalves.JournalofClinicalRehabilitativeTissueEngineeringResearch,11(40),8107–8110.
7.Wurzinger,L.J.,Opitz,R.,&Wolf,M.(1984).Shearinducedplateletactivation—Acriticalreappraisal.Biorheology,22,399–413.
8.Hellums,J.D.(1994).1993Whitakerlecture:Biorheologyinthrombosisresearch.AnnalsofBiomedicalEngineering,22,445–455.
9.Lu,P.C.,Lai,H.C.,&Liu,J.S.(2001).Areevaluationanddiscussiononthethresholdlimitforhemolysisinaturbulentshear?ow.JournalofBiomechanics,34,1361–1364.
10.Harrison,P.(2005).Plateletfunctionanalysis.BloodReviews,19,111–123.
11.Kroll,M.H.,Hellums,J.D.,McIntire,L.V.,Schafer,A.I.,&Moake,J.L.(1996).Plateletsandshearstress.Blood,88,1525–
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 對口汽修測試題及答案
- 2024年汽車美容師技能考核流程試題及答案
- 二手車評估市場前景調(diào)查試題及答案
- 汽車維修工的學(xué)習(xí)方法與分享試題及答案
- 智能醫(yī)療設(shè)備在健康監(jiān)測中的應(yīng)用案例
- 古代文學(xué)史的核心概念考題試題及答案
- 酒店隔離點防控要求課件
- 食品質(zhì)檢員考試的專業(yè)能力評估試題及答案
- 2025年語文考試形式變化試題及答案
- 足球考試題及答案學(xué)習(xí)通
- 醫(yī)療機構(gòu)抗菌藥物臨床應(yīng)用分級管理目錄(2024年版)
- 《 大學(xué)生軍事理論教程》全套教學(xué)課件
- 中考數(shù)學(xué)計算題練習(xí)100道(2024年中考真題)
- 吉林省吉林市高考報名登記表
- 質(zhì)量保證體系結(jié)構(gòu)圖(共3頁)
- 天然氣長輸管道的腐蝕與防護措施
- IEC60335-1(中文)
- 排沙泵檢修工藝流程及驗收標準
- 常見職業(yè)危害相應(yīng)職業(yè)禁忌證(簡表)
- 內(nèi)蒙古自治區(qū)實施少數(shù)民族高層次骨干人才計劃暫行辦法內(nèi)蒙古教育
評論
0/150
提交評論