雙葉機械瓣膜流固耦合仿真_第1頁
雙葉機械瓣膜流固耦合仿真_第2頁
雙葉機械瓣膜流固耦合仿真_第3頁
雙葉機械瓣膜流固耦合仿真_第4頁
雙葉機械瓣膜流固耦合仿真_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValves

UsingFiniteVolumeMethod

FengZhou1.YuanYuanCui1.LiangLiangWu1.JieYang2.LiLiu3.

Received:16October2014/Accepted:8April2015

ΘTaiwaneseSocietyofBiomedicalEngineering2016

AbstractUnderphysiologicalconditions,theopening

andclosingofthelea?etsofanimplantedarti?cialheartvalve(AHV)affectsthebloodcomponentsandthereforemaycausevariouscomplicationstothepatientsuchashemolysisorplateletactivation.Inthispaper,acomputa-tional?uidmodelispresented.Theregionaldistributionof?owshearstressinanAHVisanalyzedusingcomputa-tional?uiddynamicsandAHVperformanceisevaluatedintermsofthevariationof?owvelocityandpressurewhenbloodpassesthelea?etsintheaorticvalve.TheresultssuggestthatforthedesignofamechanicalAHV,themaximumopeningangleandinternalori?cediametershouldbeincreasedtoimprovethe?uidstructureinterac-tionanddecreasethepossibilityofdamagetobloodcomponents.Finally,the?uidstressdistributionoftheAHVlea?etstructurewascalculatedandanalyzedunderpulsating?owconditions.

1

2

3

4

5

KeyLaboratoryofAdvancedTechnologiesofMaterials,

ChineseEducationMinistry,SchoolofMaterialsScienceandEngineering,SouthwestJiaotongUniversity,

Chengdu610031,China

MechanicalEngineeringSchool,SouthwestJiaotongUniversity,Chengdu610031,China

NationalInstitutefortheControlofPharmaceuticalandBiologicalProducts,Beijing10050,China

LeibnizInstituteforPolymerResearch,MaxBergmannCenterforBiomaterials,01069Dresden,Germany

LawrenceBerkeleyNationalLaboratory,Berkeley,CA94704,USA

publishedonline:10February2016

Keywords:Bilea?etmechanicalvalves.Computational?uiddynamics.Blooddamage

1Introduction

Heartvalvesmaintainunidirectionalblood?owbytheopeningandclosingoftheirleaves,whichdependonthepressuredifferenceonthetwosidesofthevalvelea?ets.Ifanaturalheartvalveisdamagedbyseveredeformityordisease,itshouldbereplacedbyanarti?cialheartvalve(AHV),eithermechanicalorbiological,torecoverbio-logicalfunctionofblood?owtransport.Currently,over55%ofimplantedAHVsaremechanicalvalves[

HYPERLINK\l"bookmark1"

1

].Mechanicalvalvesconsistofmechanicalcomponentswithgoodmechanicalbehaviorandbiocompatibility.Amongthevarioustypesofmechanicalvalve,bilea?etmechanicalvalvesarethemostwidelyappliedclinically.

A?uid–structureinteractionanalysiscomputationmethodhasbeenappliedtoAHVs[

HYPERLINK\l"bookmark2"

2

].DeHartetal.[

HYPERLINK\l"bookmark3"

3

]analyzedthemovementvariationoflea?etswithtimeusinglaserDopplervelocimetryandahigh-speedcamera.Pelliccionietal.[

HYPERLINK\l"bookmark4"

4

]establishedatwo-dimensional(2D)digitalmodeltoanalyzesingle-andbi-lea?etvalvesinaorticpositionusingadiscretelatticeBoltzmannmethod.Zhangetal.[

HYPERLINK\l"bookmark5"

5

]analyzedtheopeningandclosingofabilea?etmechanicalheartvalvewiththe?niteelementmethod(FEM)byapplyingacouplingalgorithmbasedonthearbitraryLagrangian–Eulerian(ALE)method.Zhangetal.[

HYPERLINK\l"bookmark6"

6

]analyzedtherelationshipbetweenavalveanda2D?ow?eldusingANSYSsoftware.Mostarti?cialmechanicalheartvalvedesignsandanalyseshaveadopted2Dmodelsandsteady-state?owinthevalves,newmethodsandmeasurestoimprovethevalvestructurewouldbeenproposed.

②…

Table1Damagethresholdofbloodcomponents[

HYPERLINK\l"bookmark7"

10

HYPERLINK\l"bookmark8"

12

]by?uidshearstress

Erythrocytes(dyn/cm2)

500

Leukocytes(dyn/cm2)

300

Bloodplatelets(dyn/cm2)

100–500

Vascularendothelium(dyn/cm2)

400

Thepresentstudyanalyzestheimpactofthevalvestructureonblood?ow,includinghemodynamicaspects.Thedestructionofbloodcomponentsandplateletactiva-tionbytheshearstressgeneratedbythecoupledinteractionbetweenthevalveand?owarediscussed.ThecomputationusestheFEMwithacouplingalgorithmbasedontheALEmethod.

Thebehaviorofblood?owthroughanAHVisrelatedtotheAHVgeometry.The?uidvelocityishighwhenthejetpassesthevalve,whichmaycauseeddiesandinduceahighshearstressintheblood?owregion.Wurzingeretal.[

HYPERLINK\l"bookmark9"

7

]foundthatturbulentstresslevelsof100–1000dyn/cm2canactivateplatelets,andthatthehemolysisthresholdisabove8000dyn/cm2[

HYPERLINK\l"bookmark10"

8

,

HYPERLINK\l"bookmark11"

9

].Krolletal.estimateddamagethresholdsofbloodcomponentsby?uidshearstress.TheirresultsareshowninTable

HYPERLINK\l"bookmark12"

1

.

Inthispaper,avolumemethodisappliedtocharacterizetheblood?ow?eld.The?uiddomainisdiscretizedtogeneratea?niteelementspatiallattice.Inthismethod,differentialequations(e.g.,Navier–Stokesequationandk-εequation)areusedtocontrolvolumeintegration,resultinginasetofdiscreteequationsforanalyzingthe?ow?eldprocess.

2Methods

Whenbloodistransportedthroughanaturalheartvalve(Fig.

HYPERLINK\l"bookmark13"

1

a),the?owiscentral-?eld.Incontrast,blood?owthroughamechanicalbilea?etvalveisthroughthreechannelsandisapproximatelycentral-?eld.Makhijanetal.[

HYPERLINK\l"bookmark14"

13

]consideredthe?uid?owthroughanaturalheartvalvetobeapulsatinglaminar?ow.Experimentsrevealedthatthe?owislaminarintheearlyaccelerationphase[

HYPERLINK\l"bookmark15"

14

],andthusathree-dimensional(3D)numericalsimulationofthe?uid–structureinteractionintheinitialperiodcanbebasedonlaminar?ow.

Inthepresentwork,a25-mmbilea?etmechanicalvalveischosenastheexperimentalmodelbecauseitiscurrentlythemostfrequentlyclinicallyappliedmechanicalheartvalve[

HYPERLINK\l"bookmark16"

15

].Thetwolea?etsarelinkedtothevalveringbyapivotandbutter?ypit.Thelea?etsarerotationallyopenedbythebloodstream?owingthroughthevalve.Aschematicdiagramoftheblood?owthroughtheAHVisshowninFig.

HYPERLINK\l"bookmark13"

1

b.

Theinteractionofthebloodwiththelea?etsandori?ceoftheAHVstructurewassimulatedusingtheFEM.TheprocessisshownschematicallyinFig.

HYPERLINK\l"bookmark17"

2

.Meshesweregeneratedusingacomputational?uiddynamics(CFD)pre-treatmentprograminintegratedcomputerengineeringandmanufacturing(ICEM)andFluentsoftware(AnalysisInc.),combinedwiththeFEM.Thevalvemodelwasthenanalyzed.

Whenthevalveisfullyopened,blood?owsthroughtheori?cealongthelea?ets.Thelea?etscanimpedetheblood?owthroughthevalveinthevalval?eld,increasingthespeedofthejetstream.Theinteractionbetweentheblood?owandthevalvecausesahighshearstress,whichincreasesthepossibilityofplateletactivationorredbloodcelldamage[

HYPERLINK\l"bookmark18"

11

,

HYPERLINK\l"bookmark19"

16

HYPERLINK\l"bookmark20"

18

].

2.1ModelingDesignandSimulation

Fluid?owcontrolbyanAHVisshownschematicallyinFig.

HYPERLINK\l"bookmark13"

1

c,d.Thevalvelea?etsareopenedbytheblood?owandclosedbycouplingforces.Theforcecalculationpro-cessisasfollows.Whenblood?owsthroughthevalve,thelea?etsareopened,andwhenbloodre?uxes,theyarequicklyclosed.Theblood?owisregardedassteadywhenthevalveisfullyopened,asitisassumedthatthe?owconditions,suchasvelocity,pressure,andtemperature,areconstant.Adoptingthe?nitevolumemethod,thevelocity?eldcanbesolvedusingmomentumequations,thepres-sure?eldcanbesolvedusingcontinuityandmomentumequations,andtimeintegrationcanbecarriedoutusingtheimplicitmomentumequationandthepressureequation.

A3DgeometricmodelofamechanicalheartvalveattheaorticpositionwasconstructedasshowninFig.

HYPERLINK\l"bookmark21"

3

.

Computersimulationwasperformedunderpulsatingblood?owconditions,withthein?owsetas4L/min[

HYPERLINK\l"bookmark22"

19

].Theinteractionbetweenthevalveandtheblood?owwascalculatedandanalyzedforanopenvalve.

Inthevalvesystem,blood?owchangesperiodically.Thevalvemotionisdividedintothreephases[

HYPERLINK\l"bookmark19"

16

],asshowninFig.

HYPERLINK\l"bookmark21"

3

a.InphaseI,0<tB0.06s,thevalveisclosed;inphaseII,0.06s<tB0.35s,thevalveisopen(includesopeningandclosingofthevalve);inphaseIII,0.35s<tB0.8s,thevalveisclosed.Thevalveisfullyopenattime0.09s,andthemaximumvelocityreaches0.5m/sat0.14s.Undertheconditionofnore?uxinthethirdphase,theexperimentwasmainlycarriedoutfortheperiod0.12–0.30s(AHVfullyopened).

Thebasicassumptionsofthemodelareasfollows:(i)theblood?uidisaviscous,incompressible,isothermalhomogeneousNewtonian?uid;(ii)deformationoftissuearoundtheAHVisignored,andfrictionlessinterfacesbetweenthe?uidandsolidareassumed;(iii)thereisno?uidreturnattheoutputend;(iv)thetemperatureis

②…

AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValvesUsingFiniteVolumeMethod

②…

Fig.1Schematicdiagramofvalve?ow?eldandmodel.aNaturalvalve?ow?eld,bbilea?etmechanicalvalve?ow?eld,cmechanicalvalveinstalledataorticposition,dandAHVinopenedandclosedcon?gurations

Fig.2Numericalsimulation

process.1CFDprocess,2FEM

operation,and3numerical

software

constant;(v)gravitationalforceisneglected.Accordingtotheaboveassumptions,laminarsteady-state?owisselec-tedonthein?owsideinthecomputation.

A3DmodeloftheAHVisshowninFig.

HYPERLINK\l"bookmark21"

3

bandde?nedinTable

HYPERLINK\l"bookmark23"

2

.Theexperimentalconditionsweresetasfol-lows.Thediameterdoftheinletsideclosetotheheart

F.Zhouetal.

Fig.33DcomputationalmodelofphysicalstructureofaortacontainingAHV.aAorticpulsating?owvelocityimposedatin?owsection[

HYPERLINK\l"bookmark19"

16

],bparametersettings,andcboundaryconditions

ventricleis22.5mm.Thein?owconditionissetasu=0.32m/s,whereuisthein?owvelocity.Theblooddensity(p)is1.056g/cm3.Thekineticviscosity(g)ofbloodis3.5cpat37。C[

HYPERLINK\l"bookmark20"

18

],andtheReynoldsnumber(Re)is3186,whichisde?nedbyRe=udp/g.Reislocatedinthesubcriticalregion(thecriticalReynoldsnumberrangeisgenerally2100–4000inatube).Vortexturbulencecanforminthelea?etwake.Fortheoutletboundarycondition,theinitialoutletpressurePin=0Pa.Ano-slipboundaryconditionisimposedfortheinteractionbetweentheblood?owandthevalve.Theentranceboundaryconditionisgivenbytheinitialspeed;theboundaryconditionofthepressureontheexitsideissetaszero(Pout=0Pa)andthereisnoreturnofthe?uid.

Structuralboundaryconditionsweresetasfollows.Thereisnotranslationalmotionbetweenthepivotandlea?ets.Theboundarylayersbetweenthe?owandthevalveareassumedtohavenon-slidingmeshboundaryconditions[

HYPERLINK\l"bookmark24"

22

].

Meshgeneration:ThecomputationalmodelusestheALEmethod,whichreliesonthere-generationofa

Table2PhysicalparametersforFig.

HYPERLINK\l"bookmark21"

3

b

Position

Size(mm)

Position

Size(mm)

Ventricleend

D1[

HYPERLINK\l"bookmark25"

20

]

Lea?etthickness

0.8

Valvularsinus

D2[

HYPERLINK\l"bookmark25"

20

]

L2

150

Arterialend

D3[

HYPERLINK\l"bookmark25"

20

]

L3

80

L1

42

Openingangle

θ[

HYPERLINK\l"bookmark26"

21

]

continuouslydeformingmeshcapableofmaintaininggoodmeshquality.Themeshroughnessissetbythetypeandsizeofthegrid.Thecomplex?uidblocksaremeshedbytetrahedralandtriangulargrids.

Toincreasethesolutionaccuracyandreducecalculationtime,the?owmodelwasdividedmainlyintohexahedral,bothforthecylindrical?uidrunnerandtransitionalcellsofthemodel(Fig.

HYPERLINK\l"bookmark27"

4

a).Intheannularregions,the?ow?eldwasfurthersubdividedintotetrahedralelements.Fromgridqualitydetection,alltheelementshadmaximumskewnesslessofthan0.8.Thesmallertheskewnessvalue,thebetteristhemeshquality,andthusthecalculationsconvergemoreeasily.Thecheckedmeshqualityshouldbeaccept-ableto?niteelementcalculation[

HYPERLINK\l"bookmark28"

23

].Finally,thecellmodelwastranslatedintopolyhedralmeshgridsinthecomputationaldomaintoincreasecomputationalef?-ciency.Themeshconsistedofthreeblockswithatotalof59105cells.ThemeshmodelisshowninFig.

HYPERLINK\l"bookmark27"

4

.

The?ow?eldoftheAHVatcompletelyopenstateswasanalyzed.Theinteractionforceofthe?owonthebloodcomponentsinthecompletelyopenconditionwasevalu-ated.Thetransvalvularpressureandthevelocityofthe?owwereinvestigated,andthetransient?ow?eldwasanalyzedforanentirelyopenedvalve(Fig.

HYPERLINK\l"bookmark27"

4

b).Thevalveperformancewasevaluatedthrough?ow?eldanalysistodeterminetheinteractionforceonbloodcomponents.

Geetal.[

HYPERLINK\l"bookmark29"

24

]foundthattheunsteadyReynolds-aver-agedNavier–Stokes(URANS)equationsaresuitablefordetached-eddysimulation.Therefore,URANSisadoptedforexperimentalsimulation,andatwo-order-accuracyinthek-εequationisapplied,wherek,theturbulentkineticenergy,equals5.234910-4m2/s2;andtheturbulentdis-sipationrateεequals8.517910-4m2/s3.Pulsating?owisselectedonthein?owsideinthecomputation.Thesimu-lationcomputationadoptsaweakcouplingmethodtoanalyzetheinteractionsbetweentheAHVandblood?ow.

3ResultsandDiscussion

3.1FluidVelocityFieldDistribution

Figure

HYPERLINK\l"bookmark30"

5

showsthe?owvelocitycontoursandstreamlinesexpressingtheforward?owinthevelocity?eld.Thevalval

②…

AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValvesUsingFiniteVolumeMethod

Fig.4Computationalmeshfor

simulation(polyhedralmesh

grids)

?eldconsistsofaturbulentregion,aneddyzone,andarecirculationzone.Thevelocityisobviouslygreaterbehindthevalve,uptoamaximumvelocityof0.59m/sandrangingfromtwicetothreetimestheinitialvelocity.Thedownstream?owisrelativelysymmetric.Inthemiddlesectionofthe?owstream,aturbulent?owregionisgen-erated,whicheasilyformsazonewithhighshearstressturbulenceastheReynoldsshearstress(RSS)[

HYPERLINK\l"bookmark31"

25

].RSSisanimportantfactorintheformationofbloodhemolysisandanirreversibleaggregationofplatelets.Inthewakeofthelea?ets,vorticesappearnearthephysiologicsinuses.Thesevorticespushblood?owdownwardtothecentralregion.Astheventriclecontracts,theaorticsinusbecomesthemainlyimpactingpointofblood?ow,whichthenturnsrightintotheaorticarch[

HYPERLINK\l"bookmark32"

26

].

3.2WallShearStress

FlowshearstressisanimportantcharacteristicforthehemodynamicsofAHVs.Figure

HYPERLINK\l"bookmark33"

6

showsthepressuredistributioninthe?uid?eld,displayingtheabsolutevalueoftheZ-directionshearstressinthe?ow?eld.

Theshearstressisexpressedasτ=μ(du/dz)[

HYPERLINK\l"bookmark34"

27

].The?owstatewasanalyzedfortheheartvalveatthemax-imumopeningangle.ThemaximumRSSoccursinanarrowchannel,nearthelea?etpivotpartandattheedgesofthevalve.

Yoganathanetal.[

HYPERLINK\l"bookmark35"

28

]foundthatashearstressof100–500dyn/cm2greatlyenhancestheabilityofplateletstoaggregate,furtherleadingtothrombosisanddirectlyendangeringthepatient’slife.Additionally,Oosterbaanetal.[

HYPERLINK\l"bookmark36"

29

]reportedthatachangeofwallshearstresscanin?uencethegrowthofsurroundingtissuecells.Figure

HYPERLINK\l"bookmark33"

6

showsthatthewallshearstressofvalvalpivotandwallpositionissomewhatgreaterthanelsewhere,withamax-imumvalueabove16Pa(160dyn/cm2),whichmaytrig-gerplateletactivation[

HYPERLINK\l"bookmark37"

30

,

HYPERLINK\l"bookmark38"

31

].Moreover,ahighvelocitygradientmaybegeneratedbetweenthere?uxandtheswirl.

3.3ComparisonofValveDesignsBasedonFlowFieldCalculations

Tooptimizetheparametersofthestructureandreducethemaximumtransvalvularpressuredifference(TPD),various

②…

F.Zhouetal.

②…

Fig.5Flowvelocitycontourandstreamlinesinvalve?ow?eld.aVelocity(m/s)cloudofforward?owforfullyopenedbilea?etvalveandbskeletondiagramof3D?owvelocitystreamlines

Fig.6X–Ysection(Z-axisdirection,Fig.

HYPERLINK\l"bookmark27"

4

b)wallshearstress(Pa,1dyn/cm2=0.1Pa)

maximumopeninganglesandannularcalibersofthevalveswerecompared.

Figure

HYPERLINK\l"bookmark39"

7

showsthevelocitydistributionatmaximumopeninganglesθ=80。,85。,and90。.ResultsfortheTPDatvariousmaximumopeningangles,atalocation2.5timesthevalveori?cediameterbetweenthefrontandbackofthevalveori?ce[

HYPERLINK\l"bookmark40"

32

],areshowninFig.

HYPERLINK\l"bookmark39"

7

b.Theresultsrevealthatincreasingthemaximumopeninganglefrom80。to

90。decreasedtheaveragepressuredifferenceΔPacrossthevalvesigni?cantly.Theaveragepressuredifferencedecreaseswithincreasingmaximumopeningangle.

TheTPDandthevelocitydistributionforori?ceinternaldiametersof20.4mm(St.JudeMedicalInc.valvemodel),22.5mm(intermediatediameter),and23.4mm(ON-Xvalvemodel)wereanalyzedforamaximumopeningangleof85。.

AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValvesUsingFiniteVolumeMethod

Fig.7Comparisonof

propertiesofvalvular?ow

undervariousmaximum

openingangles.aFlowvelocity

states(m/s)andbtransvalvular

pressuredifference(Pa)

Figure

HYPERLINK\l"bookmark41"

8

showsthatthedifferencesinthe?owvelocity?elddecreasedwithincreasinginternalvalvediameter.Figure

HYPERLINK\l"bookmark41"

8

bshowstheeffectofinternalvalvediameterontheaveragedifferentialpressure.Whentheinternaldiam-eterincreasedfrom20.4to23.4mm,theaveragepressuredifferenceΔPdecreasedfrom109to52Pa.

Theseresultsindicatethathighermaximumopeningangleandinternalori?cediameterarebene?cialforloweraveragepressuredifferenceandthusalsoforlowershearstressintheblood?ow,andthusbene?cialfordecreasingthepossibilityofdamagetobloodcomponents.

4TransientPulsatingFlow

UsingtheFEM,thedragofthebilea?etAHVstructurewascalculatedandanalyzedunderpulsating?owconditions.Thein?owpeakvelocitywas0.5m/s,thelea?etthicknesswas0.8mm,andthemaximumopeninganglewas85。.

Figure

HYPERLINK\l"bookmark42"

9

ashowsthetransientvelocitydistributioninthe?ow?eldforthreetimepoints:atthehighestin?ow

velocity(0.59m/s)(I),duringthemiddleperiod,whenthe?owvelocitydistributionofthecurvedlea?et?uid?ow?eldisuniform(II),andwhenthevalvebeginstoclose(maximum?owvelocityis0.32m/s)(III).

The?owvorticityofthebilea?etAHVwascalculatedandanalyzedinthetransient?ow?eld.TheresultsareshowninFig.

HYPERLINK\l"bookmark42"

9

b.Whentheinlet?owvelocityreachesthepeakofthepulsating?ow(0.5m/s)at0.15s,thevorticitydistributionismainlyonthelea?etsandannulussurface,withthemaximumvalueatthefrontofthelea?ets.Thiscomputingresultwillhelptoimproveblood?owcharacterandreducetheimpactofhighshearstressonbloodcom-ponentsbyeddyformationinthevalve?ow?eld.

5ComparisonBetweenExperimentalandComputationalData

Table

HYPERLINK\l"bookmark43"

3

showsacomparisonoftheexperimentalresultsforthemaximumopeningangleandtherelatedeffectiveopenarea(EOA)forvariousbilea?etmechanicalheart

②…

Fig.8Comparisonof

propertiesofvalvular?ow

undervariousinternalori?ce

diameters.aFlowvelocity

states(m/s)andbtransvalvular

pressuredifference(Pa)

valves,withEOA=Q/(44.39ΔP)(whereQistheblood?owthroughthevalveandΔPistheaverageTPD).AhigherEOAisbene?cialfordecreasingtheTPD[

HYPERLINK\l"bookmark44"

33

].Table

HYPERLINK\l"bookmark43"

3

datasupportthesimulationcomputationresultsdeducedfromFig.

HYPERLINK\l"bookmark41"

8

,eventhoughdifferentbilea?etmechanicalheartvalvestructuresmayimpacttheblood?owbehavior.

Table

HYPERLINK\l"bookmark43"

3

showstheinvitrohemodynamicexperimentalresultsforvariousannulusinnerdiametersforAHVsprovidedbySt.JudeMedicalInc.

HYPERLINK\l"bookmark45"

[39

].TheseresultsindicatethatincreasingtheannulusinnersizeincreasestheEOAandreducestheaveragetransvalvularpressure.Thus,thesedatafurthersupportthesimulationresultsofFig.

HYPERLINK\l"bookmark41"

8

.

TheexperimentalresultslistedinTables

HYPERLINK\l"bookmark43"

3

and

HYPERLINK\l"bookmark46"

4

showthatthesimulationcomputationinthisworkisreliable.Theresultsnotonlyrevealtendenciesinhemodynamicbehavior,asshowninFigs.

HYPERLINK\l"bookmark39"

7

and

HYPERLINK\l"bookmark41"

8

,butalsoindicatethatattentionshouldbepaidtospeci?cgeometricpoints,suchasthepeakpositioninFig.

HYPERLINK\l"bookmark33"

6

andthesmalledgeareashowninFig.

HYPERLINK\l"bookmark42"

9

b(pointA).

6Conclusion

Thisstudyinvestigateda3Dnumericalmodeltoanalyzethe?ow?eldofabilea?etvalveatthemaximumopeningangle.Theformationanddistributionofthe?uid?ow,includingthe?uidtrajectory,velocity,pressure,shearstress,andstresseddy,wereanalyzedforsteady-state?owandpulsating?owconditions.Theresultsshowthatwhenthevalveisunderjetconditions,the?owisclosetoasubcriticalturbulentstateandvorticesforminthelea?etwake.Thesinuscanslowthe?owvelocity,andthelea?etsintroduceaminorshearforceinthe?ow?eld.Thereisagreatershearstressatthepivotposition.

Thevalvularhemodynamicperformanceatthemaxi-mumvalveopeninganglewasanalyzedusingtheFEMunderbothsteadyandthepulsating?owconditions.Finally,themaximumopeningangleandannulusdiameterrangewereinvestigated.Somedetailedvalvularhemody-namicperformancecharacteristics,includingthe?owpatternandtheexact?owpressureandshearstressdis-tribution,werealsocomputedandanalyzed.

②…

AnalysisofFlowFieldinMechanicalAorticBilea?etHeartValvesUsingFiniteVolumeMethod

Fig.9Propertiesofvalvular

?owintransient?ow?eld.

aTransientvelocity?ow?eldin

fullyopenpositionatstartof

closingphaseandbtransient

vorticitydiagramat0.15s

Table3Valvularhemodynamicparametersatvariousmaximumopeningangles[

HYPERLINK\l"bookmark28"

23

,

HYPERLINK\l"bookmark47"

34

HYPERLINK\l"bookmark48"

38

]

Bilea?etvalve

Maximumopeningangle(。)

EOA(cm2)

CarboMedics-25

78

0.79

JiuLing-25

81

1.41

St.Jude-25

85

2.1

ON-X-25

90

2.4

The?ow?eldofthebilea?etvalvehasauniformdis-tributionintheaorticposition,whichminimizestheresistanceofthevalvetothe?ow?eld.Inordertooptimizethevalvestructure,thetransprostheticdifferenceinshearstressshouldbereducedbyrationaldesignofthevalvelea?etpro?leandstructure,suchasincreasingthemaxi-mumopeningangleandinternalori?cediameter,which

Table4Hemodynamicparametersforvariousvalvularmodels[

HYPERLINK\l"bookmark49"

40

,

HYPERLINK\l"bookmark50"

41

]

AHV

Model(mm)

Annulusinnerdiameter(mm)

Averagetransvalvularpressure(mmHg)

EOA(cm2)

St.JudeMedical

21

23

25

27

16.7

18.67

20.5

22.6

17±5.7

17±7.6

13±6.9

9±2.4

1.4±0.21

1.6±0.32

2.1±0.64

2.6±0.33

②…

F.Zhouetal.

canleadtoamoreuniform?ow?eldanddecreasethepossibilityofdamagetobloodcomponents.

References

1.Vongpatanasin,W.,Hillis,L.D.,&Lange,R.A.(1996).Medicalprogress—Prostheticheartvalves.NewEnglandJournalofMedicine,335,407–416.

2.Yeh,H.H.,Grecov,D.,&Karri,S.(2014).Computationalmodellingofbilea?etmechanicalvalvesusing?uid–structureinteractionapproach.JournalofMedicalandBiologicalEngi-neering,34,482–486.

3.DeHart,J.,Peters,G.W.M.,&Schreurs,P.J.G.(2000).Atwo-dimensional?uid–structureinteractionmodeloftheaorticvalue.JournalofBiomechanics,33,1079–1088.

4.Pelliccioni,O.,Cerrolaza,M.,&Sur

EQ\*jc3\*hps16\o\al(\s\up0(′),o)

s,R.(2008).Abio?uiddynamiccomputercodeusingthegenerallatticeBoltzmannequation.AdvancesinSoftwareEngineering,39,593–611.

5.Jianhai,Z.,Dapeng,C.,&Shengquan,Z.(1996).ALE?niteelementanalysisoftheopeningandclosingprocessofthearti-?cialmechanicalvalve.AppliedMathematicsandMechanics,17,403–412.

6.Zhang,L.R.(2007).Asteadynumericalanalysisofa?uid–solidcouplingmodelinaorticarti?cialbilea?etheartvalves.JournalofClinicalRehabilitativeTissueEngineeringResearch,11(40),8107–8110.

7.Wurzinger,L.J.,Opitz,R.,&Wolf,M.(1984).Shearinducedplateletactivation—Acriticalreappraisal.Biorheology,22,399–413.

8.Hellums,J.D.(1994).1993Whitakerlecture:Biorheologyinthrombosisresearch.AnnalsofBiomedicalEngineering,22,445–455.

9.Lu,P.C.,Lai,H.C.,&Liu,J.S.(2001).Areevaluationanddiscussiononthethresholdlimitforhemolysisinaturbulentshear?ow.JournalofBiomechanics,34,1361–1364.

10.Harrison,P.(2005).Plateletfunctionanalysis.BloodReviews,19,111–123.

11.Kroll,M.H.,Hellums,J.D.,McIntire,L.V.,Schafer,A.I.,&Moake,J.L.(1996).Plateletsandshearstress.Blood,88,1525–

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論