深圳高級(jí)中學(xué)高三數(shù)學(xué)第三次測(cè)試文科試卷含答案_第1頁
深圳高級(jí)中學(xué)高三數(shù)學(xué)第三次測(cè)試文科試卷含答案_第2頁
深圳高級(jí)中學(xué)高三數(shù)學(xué)第三次測(cè)試文科試卷含答案_第3頁
深圳高級(jí)中學(xué)高三數(shù)學(xué)第三次測(cè)試文科試卷含答案_第4頁
深圳高級(jí)中學(xué)高三數(shù)學(xué)第三次測(cè)試文科試卷含答案_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高級(jí)中學(xué)2010—2011學(xué)年第一學(xué)期每三次測(cè)試高三數(shù)學(xué)(文科)一.選擇題:(本大題共10題,每小題5分,共50分)1.已知集合則為()A.B.C.D.2.復(fù)數(shù)的虛部是()A.1B.C.D.13.一個(gè)容量為n的樣本,分成若干組,已知某組頻數(shù)和頻率分別是36和0.25,則n=()A.144B.72C.36D.94.已知命題函數(shù)定義域?yàn)?;命題若則函數(shù)在上是減函數(shù),對(duì)以上兩個(gè)命題,下列結(jié)論正確的是()“”“”為假“”“”為假5.已知直線所截得的弦長為4,則k是 () A.-2 B.-1 C. 06.閱讀右圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是()A.1B.2C.3D.4(注:框圖中的賦值符號(hào)“=”也可以寫成“”或“=”)7.函數(shù)是() A.最小正周期為的偶函數(shù) B.最小正周期為的偶函數(shù) C.最小正周期為的奇函數(shù) D.最小正周期為的奇函數(shù)8.設(shè)m、n是兩條不同的直線,是三個(gè)不同的平面,給出下列四個(gè)命題:①若,,則②若,,,則③若,,則④若,,則其中正確命題的序號(hào)是 A.①和② B.②和③ C.③和④ D.①和④9.高8m和4m的兩根旗桿筆直地豎在水平地面上,且相距10m,則地面上觀察兩旗桿頂端仰角相等的點(diǎn)的軌跡為 A.圓 B.橢圓 C.雙曲線 D.拋物線10.如圖,有一直角墻角,兩邊的長度足夠長,在P處有一棵樹與兩墻的距離分別是m、m,不考慮樹的粗細(xì).現(xiàn)在想用m長的籬笆,借助墻角圍成一個(gè)矩形的花圃.設(shè)此矩形花圃的面積為,的最大值為,若將這棵樹圍在花圃內(nèi),則函數(shù)的圖象大致是A.B.C.D.二、填空題:每小題5分,滿分20分(11~13必做題)(14~15選做一題)11.若,且,則向量與的夾角為.12.已知雙曲線:的離心率,且它的一個(gè)頂點(diǎn)到較近焦點(diǎn)的距離為1,則雙曲線的方程為.13.設(shè)函數(shù),利用課本中推導(dǎo)等差數(shù)列前項(xiàng)和公式的方法,可求得的值為.14.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點(diǎn)P與點(diǎn)Q關(guān)于直線對(duì)稱,則=____________.15.(幾何證明選講選做題)如右圖,半徑為5的圓的兩條弦和相交于點(diǎn),,為的中點(diǎn),,則弦的長度為.三、解答題:(本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程,或演算步驟)16.(本小題12分)在中,,,,求的值和的面積.17.(本小題12分)某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行長期的調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如下表所示:積極參加班級(jí)工作不太主動(dòng)參加班級(jí)工作合計(jì)學(xué)習(xí)積極性高18725學(xué)習(xí)積極性一般61925合計(jì)242650(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太積極參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?(2)學(xué)生的積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?說明理由.參考公式隨機(jī)變量的觀察值18.(本小題14分)圖5直觀圖俯視圖如圖,四棱錐,≌,在它的俯視圖中,,,.圖5直觀圖俯視圖⑴求證:是直角三角形;⑵求四棱錐的體積.19.(本小題14分)已知數(shù)列滿足,且,.⑴求數(shù)列的前三項(xiàng),,;⑵求證:數(shù)列為等差數(shù)列;⑶求數(shù)列的前項(xiàng)和.yPxBAC020.(本小題14分)如圖,已知點(diǎn)P(3,0),點(diǎn)A、B分別在x軸負(fù)半軸和y軸上,且EQ\o(BP,\s\up5(→))·\o(BA,\s\up5(→))=0,EQ\o(AC,\s\up5(→))=2\o(BA,\s\up5(→)),當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí),記點(diǎn)C的軌跡為E.

(1)求曲線E的方程;

(2)已知向量EQ\o(i,\s\up5(→))=(1,0),EQ\o(j,\s\up5(→))=(0,1),過點(diǎn)Q(1,0)且斜率為的直線l交曲線E于不同的兩點(diǎn)M、N,若D(-1,0),且EQ\o(DM,\s\up5(→))·\o(DN,\s\up5(→))>0,求k的取值范圍.

yPxBAC021.(本小題14分)已知函數(shù)在上是增函數(shù),在(0,1)上是減函數(shù).(I)求、的表達(dá)式;(II)求證:當(dāng)時(shí),方程有唯一解;(III)當(dāng)時(shí),若當(dāng)∈時(shí)恒成立,求的取值范圍.高級(jí)中學(xué)2010—2011學(xué)年第一學(xué)期每三次測(cè)試高三數(shù)學(xué)(文科)答案題號(hào)12345678910答案CDADBDDAAC11.12。13。14、三、解答題:(本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程,或演算步驟)16.(本小題12分)在中,,,,求的值和的面積.答:17.(本小題12分)某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行長期的調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如下表所示:積極參加班級(jí)工作不太主動(dòng)參加班級(jí)工作合計(jì)學(xué)習(xí)積極性高18725學(xué)習(xí)積極性一般61925合計(jì)242650(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太積極參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?(2)學(xué)生的積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?說明理由.17解:(1)(2)根據(jù)所以,我們有99.9%的把握認(rèn)為“學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度”有關(guān)系.18.(本小題14分)圖5直觀圖俯視圖如圖,四棱錐,≌,在它的俯視圖中,,,.圖5直觀圖俯視圖⑴求證:是直角三角形;⑵求四棱錐的體積.18解:⑴由已知,點(diǎn)在底面上的投影是點(diǎn),所以因?yàn)椤?,所以,因?yàn)椤?,所以,因?yàn)?,所以平面,所以,是直角三角形⑵連接,因?yàn)?,,所以是等邊三角形在中,根?jù)多邊形內(nèi)角和定理計(jì)算得又因?yàn)?,所以所以,,所以又,所以,四棱錐的體積19.(本小題14分)已知數(shù)列滿足,且,.⑴求數(shù)列的前三項(xiàng),,;⑵求證:數(shù)列為等差數(shù)列;⑶求數(shù)列的前項(xiàng)和.19.解⑴由,且得由,得同理,得,……4分⑵對(duì)于,且,∵∴是與無關(guān)的常數(shù),即數(shù)列為等差數(shù)列⑶由⑵知,等差數(shù)列的公差為1,∴,得.∴,記,則有,兩式相減,得,故.yPxBAC020.(本小題14分)如圖,已知點(diǎn)P(3,0),點(diǎn)A、B分別在x軸負(fù)半軸和y軸上,且EQ\o(BP,\s\up5(→))·\o(BA,\s\up5(→))=0,EQ\o(AC,\s\up5(→))=2\o(BA,\s\up5(→)),當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí),記點(diǎn)C的軌跡為E.

(1)求曲線E的方程;

(2)已知向量EQ\o(i,\s\up5(→))=(1,0),EQ\o(j,\s\up5(→))=(0,1),過點(diǎn)Q(1,0)且斜率為的直線l交曲線E于不同的兩點(diǎn)M、N,若D(-1,0),且EQ\o(DM,\s\up5(→))·\o(DN,\s\up5(→))>0,求k的取值范圍.

yPxBAC020.解:(1)設(shè)A(a,0)(a<0=,B(0,b),C(x,y)則EQ\o(AC,\s\up5(→))=(x-a,y),EQ\o(BA,\s\up5(→))=(a,-b),EQ\o(BP,\s\up5(→))=(3,-b),

∵EQ\o(BP,\s\up5(→))·\o(BA,\s\up5(→))=0,EQ\o(AC,\s\up5(→))=2\o(BA,\s\up5(→)),∴EQ\b\lc\{(\a\al(3a2+b=0,x-a=2a,y=-2b))

消去a、b得:y2=-4x,∵a<0,∴x=3a<0.故曲線E的方程為y2=-4x

(2)設(shè)R(x,y)為直線l上一點(diǎn),由條件知EQ\o(QR,\s\up5(→))=λ(\o(i,\s\up5(→))+k\o(j,\s\up5(→)))

即(x-1,y)=λ(1,k)

∴EQ\b\lc\{(\a\al(x-1=λ,y=kλ)),消去λ得l的方程為:y=k(x-1)由EQ\b\lc\{(\a\al(y=k(x-1),y2=-4x))k2x2-2(k2-2)x+k2=0(*)

∵直線l交曲線E與不同的兩點(diǎn)M、N

∴△>0-1<k<1……①設(shè)M(x1,y1),N(x2,y2),則EQ\o(DM,\s\up5(→))=(x1+1,y1),EQ\o(DN,\s\up5(→))=(x2+1,y2)

∵M(jìn)、N在直線y=k(x-1)上,∴y1=k(x1-1),y2=k(x2-1)

又由(*),有x1+x2=EQ\f(2(k2-2),k2),x1x2=2∴EQ\o(DM,\s\up5(→))·\o(DN,\s\up5(→))=(x1+1)(x2+1)+y1y2

=(x1+1)(x2+1)+k2(x1-1)(x2-1)=(k2+1)x1x2+(1-k2)(x1+x2)+k2+1=EQ\f(8k2-4,k2)

由條件知:EQ\f(8k2-4,k2)>0k2>EQ\f(1,2)……②

由①②知:-1<k<-EQ\f(\r(2),2)或EQ\f(\r(2),2)<k<1.點(diǎn)評(píng)利用化歸思想把給出的平面向量條件轉(zhuǎn)化為坐標(biāo)來解決.21.(本小題14分)已知函數(shù)在上是增函數(shù),在(0,1)上是減函數(shù).(I)求、的表達(dá)式;(II)求證:當(dāng)時(shí),方程有唯一解;(III)當(dāng)時(shí),若當(dāng)∈時(shí)恒成立,求的取值范圍.21.解:(I)依題意,即,.∵上式恒成立,∴① ……………1分又,依題意,即,.∵上式恒成立,∴ ② …………2分由①②得. ……………3分∴ …………4分(II)由(1)可知,方程,設(shè),令,并由得解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論