




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGEPAGE5北七下知識要點分章梳理第一章:整式的運算 單項式 整式整式的運算 多項式整式的運算 同底數(shù)冪的乘法 冪的乘方 積的乘方 冪運算 同底數(shù)冪的除法 零指數(shù)冪 負指數(shù)冪 整式的加減 單項式與單項式相乘 單項式與多項式相乘 整式的乘法 多項式與多項式相乘 整式運算 平方差公式 完全平方公式 單項式除以單項式 整式的除法 多項式除以單項式一、單項式1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。4、單獨一個數(shù)或一個字母也是單項式。5、只含有字母因式的單項式的系數(shù)是1或―1。6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。7、單獨的一個非零常數(shù)的次數(shù)是0。8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。9、單項式的系數(shù)包括它前面的符號。10、單項式的系數(shù)是帶分數(shù)時,應化成假分數(shù)。11、單項式的系數(shù)是1或―1時,通常省略數(shù)字“1”。12、單項式的次數(shù)僅與字母有關(guān),與單項式的系數(shù)無關(guān)。二、多項式1、幾個單項式的和叫做多項式。2、多項式中的每一個單項式叫做多項式的項。3、多項式中不含字母的項叫做常數(shù)項。4、一個多項式有幾項,就叫做幾項式。5、多項式的每一項都包括項前面的符號。6、多項式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。7、多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。三、整式1、單項式和多項式統(tǒng)稱為整式。2、單項式或多項式都是整式。3、整式不一定是單項式。4、整式不一定是多項式。5、分母中含有字母的代數(shù)式不是整式;而是今后將要學習的分式。四、整式的加減1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配律。2、幾個整式相加減,關(guān)鍵是正確地運用去括號法則,然后準確合并同類項。3、幾個整式相加減的一般步驟: (1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。 (2)按去括號法則去括號。 (3)合并同類項。4、代數(shù)式求值的一般步驟: (1)代數(shù)式化簡。 (2)代入計算 (3)對于某些特殊的代數(shù)式,可采用“整體代入”進行計算。五、同底數(shù)冪的乘法1、n個相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。2、底數(shù)相同的冪叫做同底數(shù)冪。3、同底數(shù)冪乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。4、此法則也可以逆用,即:am+n=am﹒an。5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運用法則。六、冪的乘方1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。2、冪的乘方運算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。3、此法則也可以逆用,即:amn=(am)n=(an)m。七、積的乘方1、積的乘方是指底數(shù)是乘積形式的乘方。2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。3、此法則也可以逆用,即:anbn=(ab)n。八、三種“冪的運算法則”異同點1、共同點:(1)法則中的底數(shù)不變,只對指數(shù)做運算。(2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項式或多項式)。(3)對于含有3個或3個以上的運算,法則仍然成立。2、不同點:(1)同底數(shù)冪相乘是指數(shù)相加。(2)冪的乘方是指數(shù)相乘。(3)積的乘方是每個因式分別乘方,再將結(jié)果相乘。九、同底數(shù)冪的除法1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即:am÷an=am-n(a≠0)。2、此法則也可以逆用,即:am-n=am÷an(a≠0)。十、零指數(shù)冪1、零指數(shù)冪的意義:任何不等于0的數(shù)的0次冪都等于1,即:a0=1(a≠0)。十一、負指數(shù)冪1、任何不等于零的數(shù)的―p次冪,等于這個數(shù)的p次冪的倒數(shù),即:注:在同底數(shù)冪的除法、零指數(shù)冪、負指數(shù)冪中底數(shù)不為0。十二、整式的乘法(一)單項式與單項式相乘1、單項式乘法法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余字母連同它的指數(shù)不變,作為積的因式。2、系數(shù)相乘時,注意符號。3、相同字母的冪相乘時,底數(shù)不變,指數(shù)相加。4、對于只在一個單項式中含有的字母,連同它的指數(shù)一起寫在積里,作為積的因式。5、單項式乘以單項式的結(jié)果仍是單項式。6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。(二)單項式與多項式相乘1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據(jù)分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。2、運算時注意積的符號,多項式的每一項都包括它前面的符號。3、積是一個多項式,其項數(shù)與多項式的項數(shù)相同。4、混合運算中,注意運算順序,結(jié)果有同類項時要合并同類項,從而得到最簡結(jié)果。(三)多項式與多項式相乘1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數(shù)等于兩個多項式項數(shù)的積。3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用“同號得正,異號得負”。4、運算結(jié)果中有同類項的要合并同類項。5、對于含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。十三、平方差公式1、(a+b)(a-b)=a2-b2,即:兩數(shù)和與這兩數(shù)差的積,等于它們的平方之差。2、平方差公式中的a、b可以是單項式,也可以是多項式。3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。4、平方差公式還能簡化兩數(shù)之積的運算,解這類題,首先看兩個數(shù)能否轉(zhuǎn)化成(a+b)?(a-b)的形式,然后看a2與b2是否容易計算。十四、完全平方公式1、即:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍。2、公式中的a,b可以是單項式,也可以是多項式。3、掌握理解完全平方公式的變形公式:(1)(2)(3)4、完全平方式:我們把形如:的二次三項式稱作完全平方式。5、當計算較大數(shù)的平方時,利用完全平方公式可以簡化數(shù)的運算。6、完全平方公式可以逆用,即:十五、整式的除法(一)單項式除以單項式的法則1、單項式除以單項式的法則:一般地,單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個因式。2、根據(jù)法則可知,單項式相除與單項式相乘計算方法類似,也是分成系數(shù)、相同字母與不相同字母三部分分別進行考慮。(二)多項式除以單項式的法則1、多項式除以單項式的法則:多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。用字母表示為:2、多項式除以單項式,注意多項式各項都包括前面的符號。第六章變量之間的關(guān)系 自變量 變量的概念 因變量 變量之間的關(guān)系 表格法 關(guān)系式法 變量的表達方法 速度時間圖象 圖象法 路程時間圖象一、變量、自變量、因變量1、在某一變化過程中,不斷變化的量叫做變量。2、如果一個變量y隨另一個變量x的變化而變化,則把x叫做自變量,y叫做因變量。3、自變量與因變量的確定:(1)自變量是先發(fā)生變化的量;因變量是后發(fā)生變化的量。(2)自變量是主動發(fā)生變化的量,因變量是隨著自變量的變化而發(fā)生變化的量。(3)利用具體情境來體會兩者的依存關(guān)系。二、表格1、表格是表達、反映數(shù)據(jù)的一種重要形式,從中獲取信息、研究不同量之間的關(guān)系。(1)首先要明確表格中所列的是哪兩個量;(2)分清哪一個量為自變量,哪一個量為因變量;(3)結(jié)合實際情境理解它們之間的關(guān)系。2、繪制表格表示兩個變量之間關(guān)系(1)列表時首先要確定各行、各列的欄目;(2)一般有兩行,第一行表示自變量,第二行表示因變量;(3)寫出欄目名稱,有時還根據(jù)問題內(nèi)容寫上單位;(4)在第一行列出自變量的各個變化取值;第二行對應列出因變量的各個變化取值。(5)一般情況下,自變量的取值從左到右應按由小到大的順序排列,這樣便于反映因變量與自變量之間的關(guān)系。三、關(guān)系式1、用關(guān)系式表示因變量與自變量之間的關(guān)系時,通常是用含有自變量(用字母表示)的代數(shù)式表示因變量(也用字母表示),這樣的數(shù)學式子(等式)叫做關(guān)系式。2、關(guān)系式的寫法不同于方程,必須將因變量單獨寫在等號的左邊。3、求兩個變量之間關(guān)系式的途徑:(1)將自變量和因變量看作兩個未知數(shù),根據(jù)題意列出關(guān)于未知數(shù)的方程,并最終寫成關(guān)系式的形式。(2)根據(jù)表格中所列的數(shù)據(jù)寫出變量之間的關(guān)系式;(3)根據(jù)實際問題中的基本數(shù)量關(guān)系寫出變量之間的關(guān)系式;(4)根據(jù)圖象寫出與之對應的變量之間的關(guān)系式。4、關(guān)系式的應用:(1)利用關(guān)系式能根據(jù)任何一個自變量的值求出相應的因變量的值;(2)同樣也可以根據(jù)任何一個因變量的值求出相應的自變量的值;(3)根據(jù)關(guān)系式求值的實質(zhì)就是解一元一次方程(求自變量的值)或求代數(shù)式的值(求因變量的值)。四、圖象1、圖象是刻畫變量之間關(guān)系的又一重要方法,其特點是非常直觀、形象。2、圖象能清楚地反映出因變量隨自變量變化而變化的情況。3、用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸(又稱橫軸)上的點表示自變量,用豎直方向的數(shù)軸(又稱縱軸)上的點表示因變量。4、圖象上的點:(1)對于某個具體圖象上的點,過該點作橫軸的垂線,垂足的數(shù)據(jù)即為該點自變量的取值;(2)過該點作縱軸的垂線,垂足的數(shù)據(jù)即為該點相應因變量的值。(3)由自變量的值求對應的因變量的值時,可在橫軸上找到表示自變量的值的點,過這個點作橫軸的垂線與圖象交于某點,再過交點作縱軸的垂線,縱軸上垂足所表示的數(shù)據(jù)即為因變量的相應值。(4)把以上作垂線的過程過來可由因變量的值求得相應的自變量的值。5、圖象理解(1)理解圖象上某一個點的意義,一要看橫軸、縱軸分別表示哪個變量;(2)看該點所對應的橫軸、縱軸的位置(數(shù)據(jù));(3)從圖象上還可以得到隨著自變量的變化,因變量的變化趨勢。五、速度圖象1、弄清哪一條軸(通常是縱軸)表示速度,哪一條軸(通常是橫軸)表示時間;2、準確讀懂不同走向的線所表示的意義:(1)上升的線:從左向右呈上升狀的線,其代表速度增加;(2)水平的線:與水平軸(橫軸)平行的線,其代表勻速行駛或靜止;(3)下降的線:從左向右呈下降狀的線,其代表速度減小。六、路程圖象1、弄清哪一條軸(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西壯族自治區(qū)2024-2025學年高二下學期4月期中英語試題
- 聯(lián)合生產(chǎn)協(xié)議書
- 2024年體育經(jīng)紀人考試中的常見問題與應對措施試題及答案
- 追求卓越的2024年足球裁判員等級考試信念試題及答案
- 《新能源汽車車輛生產(chǎn)企業(yè)及產(chǎn)品公告產(chǎn)品管理流程課件》
- 裁判員等級考試必做試題及答案
- 農(nóng)作物種子繁育員專業(yè)背景試題及答案
- 注重細節(jié)2024年裁判員考試的關(guān)鍵 試題及答案
- 種子繁育員職業(yè)資格新題試題及答案
- 精練技能的籃球裁判員試題及答案
- 第18課《井岡翠竹》課件-2024-2025學年統(tǒng)編版語文七年級下冊
- 公立醫(yī)院成本核算指導手冊
- 第16課《有為有不為》公開課一等獎創(chuàng)新教學設計
- 年產(chǎn)10噸功能益生菌凍干粉的工廠設計改
- 基于鉆石模型的南通紡織產(chǎn)業(yè)競爭力分析
- 多肉植物生長觀察日記小報
- 華銳SL1500風機發(fā)電機及水冷系統(tǒng)故障及解決對策
- 關(guān)于更換老師的申請書范文
- 發(fā)電廠電氣一次部分設計—2×300+2×200MW
- 基于深度學習的鳥類識別系統(tǒng)的設計與實現(xiàn)
- 【走向高考】(2013春季出版)高考物理總復習 模塊整合課件 新人教版選修3-5
評論
0/150
提交評論