




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PaperlTS2015ProbabilisticModelsforSensorSimulationsfinal.pdf 智能交通世界大會(huì)ITS智慧城市社區(qū)人工智能AI物聯(lián)網(wǎng)IT報(bào)告課件教案22ndITSWorldCongress,Bordeaux,France,59October2019PapernumberITS-2627Probabilistic SensorSimulationsforValidatingDataFusionSystemsRobinSchubert1*,NormanMattern1,RobinvanderMade21.BASELABSGmbH,Ebertstr.10,09126Chemnitz,Germany,robin.schubert@baselabs.de2.TASSInternational,TheNetherlands AbstractWiththeincreasingdeploymentofadvaneeddriverassistaneesystemsandtheongoingdevelopmentofvehicleautomation,efficientwaysofvalidating suchsystemsarebecomingacrucialpartofthedevel-opmentprocess.Inparticular,simulationsareanincreasingly important addition tofieldtrialsastheyfacilitateanearlyandautomatedevaluation.Inthispaper,aprobabilisticmethodologyforsimulatingsensordatainthecontextofadvaneeddriverassistaneesystemsandautomatedvehiclesispresented.Theobjectiveofthisapproachistoincreasethesimulationslevelofrealismwhilemaintainingbothflexibilityandadaptabilityof simulation-basedvalidation strategies.Theproposedprobabilistic sensormodelsarecomparedtorealradardatainordertoevaluatethestatisticalcharacteristicsofbothdatasets.Withthepresentedapproach,itwillbepossibletoincreasethequalityoftheinitialevaluationresultsbasedonsimulateddata.Keywords: Sensorsimulation, MonteCarlo,ProbabilisticfilteringIntroductionInordertofurtherincreaseroadsafety andtrafficefficiency,advaneeddriver assistaneesystemsarecurrently beingwidelydeployed.Inaddition,different stakeholdersarecurrently investigating howanincreasinglevelofvehicleautomationcancontributetotheseobjectives[1].Asthesesystemsaredi-rectly intervening intothedriving process,theirdesignandimplementationishighlysafety-critical.Appropriateevaluationmethodologiesareacrucialpartofanydevelopmentprocessforsuchsystems.Duetothehighcomplexityoftrafficscenarios,fieldtrialsrequireatremendouseffort including driving millions ofkilometres.Thus,evaluationmethodologiesbasedonsimulationareincreasinglyappliedProbabilisticSensorSimulationsforValidatingDataFusionSystems2inparticular,fortheearlyphasesofevaluation.Themainbenefitsofsimulationsinclude thepossibilitytoautomatetests,toconductevaluationseveniftheplatform(e.g.sensors)arenotyetavailableandtoassesssafety-criticalsituations.Ontheotherhand,thesignificaneeofsimulation-basedevaluationsstronglydependsonthequalityofthesimulations,thatis,ontheprobabilitythatrealandsimulatedtrafficseenarioswouldtriggerasimilarbehaviourofthesystemundertest.Currently,twomainapproachesofsimulatingsensordataarebeingused:Groundtruthsensormodels:Thesemodelsdeliverthetrue,undisturbedsimulatedvaluesofthesimulatedquantities(e.g.,thepositionandvelocityofvehiclesorthecurvatureofaIane).Thenotionbehindthiskindofmodelsisthatasystemwhichfailsonidealizeddatawillcertainlynotfulfilitsrequirementsinrealisticscenarios.Physics-basedsensormodels:Thesemodelsattempttocovertheinternalbehaviourofthesensorandthephysicalmeasurementprinciple.Asanexample,manysimulationenvironmentsproviderenderedcameraimagesthataccount,amongothers,forlightingandweatherconditions. Similarly,physicalradarsensorsexistthatcalculatethepropagationofelectromagneticwavesinthetrafficsceneandthedetectioncharacteristics(e.g.,theantennapatterns) orthesensor.Whileeachoftheseapproachesisjustifiedforcertainusecases,bothlevelsofmodelling haveparticulardrawbacks.Thedisadvantageofgroundtruthmodelsisratherobvious,astheycompletelyneglect sen-sordisturbanceswhichdeterioratesthesignificanee oftheevaluationresultsobtainedwithsuchmodels.Thoughphysicalmodelsappeartoovercomethislimitationbymaximizingtherealismofthesimulateddata,theirdrawbacksareratheraveryhighcomputationalcomplexityandevenmore importantaratherlimitedpossibilitytoadaptthesimulationtodifferent sensortypes.Infact,exchanging,e.g.,aDopplerradarbyafrequencymodulatedcontinuouswave(FMCW)radarimpliestodevelopacom-pletelynewphysicalsensormodel.Table1ComparisonofdifferentabstractionlayersofsensormodelsforsimulationCriteriaGroundTruthModelsPhysicalModelsProbabilisticModelsErrorCharacteristicsidealizedrealisticrealisticstatisticsComputationalComplexitylowveryhighLowAdaptabilitytospecific sensorsn/averyhighlowProbabilisticSensorSimulationsforValidatingDataFusionSystems3Figure1GeneralstructureoftheprobabilisticsensormodelapproachInthispaper,anintermediateabstractionlayerforsensorsimulations ispresentedwhichintegrates sen-sordisturbancesprobabilistically.Thus,theobjectiveistherepresenttheerrorstatisticsofrealsensordataratherthanthedatathemselves.Table1givesacomparisonofthisapproachandthetwoclassicalmodellinglayers.Thepaperdescribesthetechnicalapproachandpresentsfirstresultsthathavebeenobtainedbycomparingprobabilisticallysimulateddatatorealdatainatypicaltraffic scene. Technical approachandchallengesThe generalideaofthepresentedapproachthatisillustratedinfigure1appearsratherstraightforward:Theidealizedsensordatageneratedfromagroundtruthsensormodelaresuperimposedbyanerrorsignalusingarandomgenerator.Inpractice,thiscanbedoneusingaMonteCarloapproach(forinstanee, rejection sampling[2]).Thisapproachcanbeappliedtodifferenttypesofsensorerrors,includingSensornoiseforeachmeasuredguanLily,l?alsenegativedetectionSjl;alsepositivedetecLions,Timingenvors(deterministic/probabilistic sensorlatencies)Themajorchallengeistoselectanappropriateprobabilisticdensityfunction(PDF)tosamplefrom.ThisPDFneedstorepresenttherealcharacteristicsofthesensorwhilestillfacilitatingadaptability.Thisadaptabilityshallnotonlycoverdifferent
sensors,butalsodifferent environments,weatherconditions,etc.Thistrade-offisachievedbydefiningaparticulartypeofPDFforeacherrortype(e.g.aPoissondistributionfordetectionerrororaRayleigh distribution forradardetections).However,theparametersofthesePDFs(e.g.,theclutterdensityforaPoissondistribution)canstillbesetaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromSimulationProbabilisticSensorModelsSimulationSimulationProbabilisticSensorModelsSimulationEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforValidating DataFusionSystems4CaseStudyInordertocomparetheprobabilisticallysimulatedsensordatawithrealdata,thefollowingevaluationmethodologyhasbeenapplied:DatafromvarioussensorshavebeenrecordedusingthedatahandlingframeworkBASELABSConnect[3].Thedataincludescameraimagesanddetectionsofa77GHzFMCWradar,Fromtherecordeddata,asimulationsscenariohasbeenderivedusingthesimulationsoftwarePresScan[4].Vehiclesinfrontoftheegovehiclehavebeensimulatedusingagroundtruthpositionandvelocitysensor(cp.figures2).Figure2Comparisonofrealandsimulatedtraffic scenariousedfortheevaluation. Figure3:IdealizedandmodifiedradarmeasurementsProbabilisticSensorSimulationsforValidatingDatafusionSystems5Usingtheapproachpresentedinthispaper,sensornoisehasbeenaddedtotherange,rangerate,andazimuthmeasurementsoftheradargroundtruthdata.Inaddition, detectionerrorsincludingfalsenegativesandfalseposiLives(c1ntter)hriveheenridded. Th^已mncharacteristicsoftheprobabilisticsensormodelshavebeencomparedtothestatisticsoftherealsradardata(includingthedetectionperformaneeandthemeasurementaccuracy)asshowninfigure3.Thecomparisonshowsthatthesimulateddisturbeddatarepresentsthesta-tisticalcharacteristicsofthetruedatareasonablywellwhichdoesnotappearsurprising,astheparametersoftherandomgeneratorhavebeenderivedfromtheseverymeasurementsbefore.Thisexemplaryevaluationshowsthatitiscomparablyeasytogenerate simulateddisturbedsensordataifthestatisticalpropertiesofthesensorundertestarewellknown.ResultsIn additiontothequalitativeevaluationdescribedintheprevioussection,aquantitativevalidationhas beenconducted.Theobjectivewastoensurethatthestatisticalpropertiesthataresupposedtobemod-elledcanbeindeedfoundinthesimulatedsensordata.Inthefollowing,theresultsforthedetectionerrorsarepresented:Forfalsenegatives,theuseroftheprobabilisticsensormodelmaydefinethedetection probabilityofthesimulatedsensor.Fromallsimulateddetections,asubsetischosesprobabilisticallythatissimulatedasnotdetectedand,thus,isnotdeliveredtotheoutputofthesimulationmodel.Infigure4,thecumulatedratiobetweenthedetectedobjectsandtheexistingobjectsisillustrated.Forthisexperiment,aparameterof=0.7hasbeenused.Itcanbeobservedthatwhileatthebeginningofthesimulation,theresultingratioisratherdynamic,itisconvergingagainst70%duringthesimula-tion.Thevalidationofthefalsepositivedetectionsrequiresabitmoreofexplanation:Themainparameterofthesimulationforthiseffectisthenumberoffalsepositivedetectionswithinthefieldofview.Thisparameterisnotprobabilisticonthecontrary,itisadeterministicvalue(whichmeansthatifthevalueissetto2,exactly2falsepositivedetectionsaresimulatedateachtimestep.However,thepositionsofthefalsepositive detectionsarechosenprobabilistically.ConsidertheexampleofanACCshowninfigure5:Theegovehicleisadjustingitsspeedaccordingtothedistaneeandthevelocityofthetargetvehicleinfrontofhim.Afalsepositivedeteetionontheneighbourlaneandinfrontofthetargetvehiclewillnotchangethebehaviourofthesystem.However,afalsepositivedetectionbetweentheegoandthehostvehiclewillhaveaneffect.Thus,theareaoftheegolanebetweenbothvehiclescanbeconsideredanareaofinterest fortheACCwithrespecttofalsepositivedetections.ProbabilisticSensorSimulationsforValidatingDataFusionSystems6Thequestionishowmanyfalsepositivedetectionswilloccurwithinthisareaofinterest.DatafusionsystemstypicallyassumethatthenumberoffalsepositivedetectionsisfollowingaPoissondistribution, whosedensitycanbecalculatedbymultiplyingthenumberoffalsepositivedetectionswiththeratiobetweentheareaofinterestandtheareaofthefieldofview.Figure6showsboththetheoreticalPoissondistributionforthegivenscenarioaswellastheempiricalvalues.Itcanbeseenthatthesimulationfitswelltothetheoreticalassumptions.Thevalidation showsthatthesimulatedmeasurementsbehaveaccordingtotheassumptionstypicaldatafusionsystemshave(thatis,Gaussiannoise,adefineddetectionprobabilityandafalsepositivedensitythatfollowsaPoissondistribution).Thus,thesimulationcanbeconvenientlyusedtotestandvalidatedatafusionsystemsanddeterminetheirbehaviourunderthecondition thattheirassumptionshold.Fu-tureworkwillalsoincludethesimulationofeffectsthatviolatessuchassumptions. ProbabilisticSensorSimulations forValidating DataFusionSystems7Figure4:Simulatedfalsenegativedetections.Inthetopdiagram,thetimestepsfrom0to500are
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 三七創(chuàng)新創(chuàng)業(yè)大賽
- 導(dǎo)尿操作技術(shù)教學(xué)
- 2023年河北省石家莊市普通高校高職單招職業(yè)技能測(cè)試題(含答案)
- 黨課十八屆三中全會(huì)精神解讀
- 計(jì)算機(jī)二級(jí)考試基礎(chǔ)試題及答案
- 電子商務(wù)畢業(yè)實(shí)習(xí)總結(jié)
- 工廠團(tuán)員上半年工作總結(jié)
- 2025年長(zhǎng)沙試用期內(nèi)簽訂勞動(dòng)合同的規(guī)定
- 公司印刷機(jī)租賃合同
- 個(gè)人消費(fèi)貸款借款擔(dān)保合同范本
- (一模)2025年廣東省高三高考模擬測(cè)試 (一) 英語(yǔ)試卷(含官方答案及詳解)
- 退役軍人無(wú)人機(jī)培訓(xùn)宣傳
- 退役軍人保密教育
- 交通運(yùn)輸行業(yè)股權(quán)分配方案
- 中試平臺(tái)管理制度
- MOOC 跨文化交際通識(shí)通論-揚(yáng)州大學(xué) 中國(guó)大學(xué)慕課答案
- (正式版)SHT 3078-2024 立式圓筒形料倉(cāng)工程設(shè)計(jì)規(guī)范
- 《比薩斜塔》-完整版課件
- 統(tǒng)編版高二選擇性必修(中)《小二黑結(jié)婚》優(yōu)秀公開課獲獎(jiǎng)教案優(yōu)質(zhì)公開課獲獎(jiǎng)教學(xué)設(shè)計(jì)
- 建筑節(jié)能技術(shù)課件
- 項(xiàng)目建設(shè)全過程管理經(jīng)典講義(PPT)
評(píng)論
0/150
提交評(píng)論