




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter12SimpleLinearRegressionBusinessStatistics:AFirstCourse
FifthEditionChap12-1BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc.LearningObjectivesInthischapter,youlearn:
HowtouseregressionanalysistopredictthevalueofadependentvariablebasedonanindependentvariableThemeaningoftheregressioncoefficientsb0andb1HowtoevaluatetheassumptionsofregressionanalysisandknowwhattodoiftheassumptionsareviolatedTomakeinferencesabouttheslopeandcorrelationcoefficientToestimatemeanvaluesandpredictindividualvalues2BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..Correlationvs.RegressionAscatterplotcanbeusedtoshowtherelationshipbetweentwovariablesCorrelationanalysisisusedtomeasurethestrengthoftheassociation(linearrelationship)betweentwovariablesCorrelationisonlyconcernedwithstrengthoftherelationshipNocausaleffectisimpliedwithcorrelationScatterplotswerefirstpresentedinCh.2CorrelationwasfirstpresentedinCh.33BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..Introductionto
RegressionAnalysisRegressionanalysisisusedto:PredictthevalueofadependentvariablebasedonthevalueofatleastoneindependentvariableExplaintheimpactofchangesinanindependentvariableonthedependentvariableDependentvariable:thevariablewewishto predictorexplainIndependentvariable:thevariableusedtopredict orexplainthedependent variable4BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionModelOnlyoneindependentvariable,XRelationshipbetweenXandYisdescribedbyalinearfunctionChangesinYareassumedtoberelatedtochangesinX5BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..TypesofRelationshipsYXYXYYXXLinearrelationshipsCurvilinearrelationships6BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..TypesofRelationshipsYXYXYYXXStrongrelationshipsWeakrelationships(continued)7BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..TypesofRelationshipsYXYXNorelationship(continued)8BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..LinearcomponentSimpleLinearRegressionModelPopulation
YinterceptPopulationSlope
CoefficientRandomErrortermDependentVariableIndependentVariableRandomErrorcomponent9BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..(continued)RandomErrorforthisXivalueYXObservedValueofYforXiPredictedValueofYforXi
XiSlope=β1Intercept=β0
εiSimpleLinearRegressionModel10BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ThesimplelinearregressionequationprovidesanestimateofthepopulationregressionlineSimpleLinearRegressionEquation(PredictionLine)Estimateoftheregression
interceptEstimateoftheregressionslope
Estimated(orpredicted)YvalueforobservationiValueofXforobservationi11BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..TheLeastSquaresMethodb0andb1areobtainedbyfindingthevaluesofthatminimizethesumofthesquareddifferencesbetweenYand:12BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..FindingtheLeastSquaresEquationThecoefficientsb0andb1,andotherregressionresultsinthischapter,willbefoundusingExcelorMinitabFormulasareshowninthetextforthosewhoareinterested13BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..b0istheestimatedmeanvalueofYwhenthevalueofXiszerob1istheestimatedchangeinthemeanvalueofYasaresultofaone-unitchangeinXInterpretationofthe
SlopeandtheIntercept14BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExampleArealestateagentwishestoexaminetherelationshipbetweenthesellingpriceofahomeanditssize(measuredinsquarefeet)Arandomsampleof10housesisselectedDependentvariable(Y)=housepricein$1000sIndependentvariable(X)=squarefeet15BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:DataHousePricein$1000s(Y)SquareFeet(X)245140031216002791700308187519911002191550405235032424503191425255170016BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:ScatterPlotHousepricemodel:ScatterPlot17BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:UsingExcel18BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:ExcelOutputRegressionStatisticsMultipleR0.76211RSquare0.58082AdjustedRSquare0.52842StandardError41.33032Observations10ANOVA
dfSSMSFSignificanceFRegression118934.934818934.934811.08480.01039Residual813665.56521708.1957Total932600.5000
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept98.2483358.033481.692960.12892-35.57720232.07386SquareFeet0.109770.032973.329380.010390.033740.18580Theregressionequationis:19BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:MinitabOutputTheregressionequationisPrice=98.2+0.110SquareFeet
Predictor
Coef
SECoef
T
PConstant
98.25
58.03
1.69
0.129SquareFeet
0.10977
0.03297
3.33
0.010
S=41.3303
R-Sq=58.1%
R-Sq(adj)=52.8%
AnalysisofVariance
Source
DF
SS
MS
F
PRegression
1
18935
18935
11.08
0.010ResidualError
8
13666
1708Total
9
32600Theregressionequationis:houseprice=98.24833+ 0.10977(squarefeet)20BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:GraphicalRepresentationHousepricemodel:ScatterPlotandPredictionLineSlope=0.10977Intercept=98.24821BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:Interpretationofbob0istheestimatedmeanvalueofYwhenthevalueofXiszero(ifX=0isintherangeofobservedXvalues)Becauseahousecannothaveasquarefootageof0,b0hasnopracticalapplication22BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:Interpretingb1b1estimatesthechangeinthemeanvalueofYasaresultofaone-unitincreaseinXHere,b1=0.10977tellsusthatthemeanvalueofahouseincreasesby0.10977($1000)=$109.77,onaverage,foreachadditionalonesquarefootofsize23BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..Predictthepriceforahousewith2000squarefeet:Thepredictedpriceforahousewith2000squarefeetis317.85($1,000s)=$317,850SimpleLinearRegressionExample:MakingPredictions24BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:MakingPredictionsWhenusingaregressionmodelforprediction,onlypredictwithintherelevantrangeofdataRelevantrangeforinterpolationDonottrytoextrapolatebeyondtherangeofobservedX’s25BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..MeasuresofVariationTotalvariationismadeupoftwoparts:TotalSumofSquaresRegressionSumofSquaresErrorSumofSquareswhere:
=Meanvalueofthedependentvariable
Yi=Observedvalueofthedependentvariable =PredictedvalueofYforthegivenXivalue26BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SST=totalsumofsquares(TotalVariation)MeasuresthevariationoftheYivaluesaroundtheirmeanYSSR=regressionsumofsquares(ExplainedVariation)VariationattributabletotherelationshipbetweenXandYSSE=errorsumofsquares(UnexplainedVariation)VariationinYattributabletofactorsotherthanX(continued)MeasuresofVariation27BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..(continued)XiYXYiSST
=
(Yi
-
Y)2SSE
=
(Yi
-
Yi)2
SSR=
(Yi
-
Y)2
___Y
YY_Y
MeasuresofVariation28BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ThecoefficientofdeterminationistheportionofthetotalvariationinthedependentvariablethatisexplainedbyvariationintheindependentvariableThecoefficientofdeterminationisalsocalledr-squaredandisdenotedasr2CoefficientofDetermination,r2note:29BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..r2=1Examplesofr2ValuesYXYXr2=1r2=1PerfectlinearrelationshipbetweenXandY:100%ofthevariationinYisexplainedbyvariationinX30BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..Examplesofr2ValuesYXYX0<r2<1WeakerlinearrelationshipsbetweenXandY:SomebutnotallofthevariationinYisexplainedbyvariationinX31BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..Examplesofr2Valuesr2=0NolinearrelationshipbetweenXandY:ThevalueofYdoesnotdependonX.(NoneofthevariationinYisexplainedbyvariationinX)YXr2=032BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:CoefficientofDetermination,r2inExcelRegressionStatisticsMultipleR0.76211RSquare0.58082AdjustedRSquare0.52842StandardError41.33032Observations10ANOVA
dfSSMSFSignificanceFRegression118934.934818934.934811.08480.01039Residual813665.56521708.1957Total932600.5000
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept98.2483358.033481.692960.12892-35.57720232.07386SquareFeet0.109770.032973.329380.010390.033740.1858058.08%ofthevariationinhousepricesisexplainedbyvariationinsquarefeet33BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:CoefficientofDetermination,r2inMinitabTheregressionequationisPrice=98.2+0.110SquareFeet
Predictor
Coef
SECoef
T
PConstant
98.25
58.03
1.69
0.129SquareFeet
0.10977
0.03297
3.33
0.010
S=41.3303
R-Sq=58.1%
R-Sq(adj)=52.8%
AnalysisofVariance
Source
DF
SS
MS
F
PRegression
1
18935
18935
11.08
0.010ResidualError
8
13666
1708Total
9
3260058.08%ofthevariationinhousepricesisexplainedbyvariationinsquarefeet34BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..StandardErrorofEstimateThestandarddeviationofthevariationofobservationsaroundtheregressionlineisestimatedbyWhere SSE=errorsumofsquares n=samplesize35BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:
StandardErrorofEstimateinExcelRegressionStatisticsMultipleR0.76211RSquare0.58082AdjustedRSquare0.52842StandardError41.33032Observations10ANOVA
dfSSMSFSignificanceFRegression118934.934818934.934811.08480.01039Residual813665.56521708.1957Total932600.5000
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept98.2483358.033481.692960.12892-35.57720232.07386SquareFeet0.109770.032973.329380.010390.033740.1858036BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:
StandardErrorofEstimateinMinitabTheregressionequationisPrice=98.2+0.110SquareFeet
Predictor
Coef
SECoef
T
PConstant
98.25
58.03
1.69
0.129SquareFeet
0.10977
0.03297
3.33
0.010
S=41.3303
R-Sq=58.1%
R-Sq(adj)=52.8%
AnalysisofVariance
Source
DF
SS
MS
F
PRegression
1
18935
18935
11.08
0.010ResidualError
8
13666
1708Total
9
3260037BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ComparingStandardErrorsYYXXSYXisameasureofthevariationofobservedYvaluesfromtheregressionlineThemagnitudeofSYXshouldalwaysbejudgedrelativetothesizeoftheYvaluesinthesampledatai.e.,SYX=$41.33Kis
moderatelysmallrelativetohousepricesinthe$200K-$400Krange38BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..AssumptionsofRegression
L.I.N.ELinearityTherelationshipbetweenXandYislinearIndependenceofErrorsErrorvaluesarestatisticallyindependentNormalityofErrorErrorvaluesarenormallydistributedforanygivenvalueofXEqualVariance(alsocalledhomoscedasticity)Theprobabilitydistributionoftheerrorshasconstantvariance39BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ResidualAnalysisTheresidualforobservationi,ei,isthedifferencebetweenitsobservedandpredictedvalueChecktheassumptionsofregressionbyexaminingtheresidualsExamineforlinearityassumptionEvaluateindependenceassumptionEvaluatenormaldistributionassumptionExamineforconstantvarianceforalllevelsofX(homoscedasticity)GraphicalAnalysisofResidualsCanplotresidualsvs.X40BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ResidualAnalysisforLinearityNotLinearLinear
xresidualsxYxYxresiduals41BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ResidualAnalysisforIndependenceNotIndependentIndependentXXresidualsresidualsXresiduals
42BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..CheckingforNormalityExaminetheStem-and-LeafDisplayoftheResidualsExaminetheBoxplotoftheResidualsExaminetheHistogramoftheResidualsConstructaNormalProbabilityPlotoftheResiduals43BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ResidualAnalysisforNormalityPercentResidualWhenusinganormalprobabilityplot,normalerrorswillapproximatelydisplayinastraightline-3-2-10123010044BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ResidualAnalysisfor
EqualVarianceNon-constantvariance
ConstantvariancexxYxxYresidualsresiduals45BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..SimpleLinearRegressionExample:ExcelResidualOutputRESIDUALOUTPUTPredictedHousePriceResiduals1251.92316-6.9231622273.8767138.123293284.85348-5.8534844304.062843.9371625218.99284-19.992846268.38832-49.388327356.2025148.797498367.17929-43.179299254.667464.3326410284.85348-29.85348Doesnotappeartoviolateanyregressionassumptions46BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..InferencesAbouttheSlopeThestandarderroroftheregressionslopecoefficient(b1)isestimatedbywhere:
=Estimateofthestandarderroroftheslope =Standarderroroftheestimate47BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..InferencesAbouttheSlope:
tTestttestforapopulationslopeIstherealinearrelationshipbetweenXandY?NullandalternativehypothesesH0:β1=0 (nolinearrelationship)H1:β1
≠0 (linearrelationshipdoesexist)Teststatistic
where:b1=regressionslopecoefficient
β1=hypothesizedslopeSb1=standarderroroftheslope48BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..InferencesAbouttheSlope:
tTestExampleHousePricein$1000s(y)SquareFeet(x)2451400312160027917003081875199110021915504052350324245031914252551700EstimatedRegressionEquation:Theslopeofthismodelis0.1098Istherearelationshipbetweenthesquarefootageofthehouseanditssalesprice?49BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..InferencesAbouttheSlope:
tTestExampleH0:β1=0H1:β1
≠0FromExceloutput:
CoefficientsStandardErrortStatP-valueIntercept98.2483358.033481.692960.12892SquareFeet0.109770.032973.329380.01039b1Predictor
Coef
SECoef
T
PConstant
98.25
58.03
1.69
0.129SquareFeet
0.10977
0.03297
3.33
0.010FromMinitaboutput:b150BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..InferencesAbouttheSlope:
tTestExampleTestStatistic:tSTAT=3.329ThereissufficientevidencethatsquarefootageaffectshousepriceDecision:RejectH0RejectH0RejectH0a/2=.025-tα/2DonotrejectH00tα/2a/2=.025-2.30602.30603.329d.f.=10-2=8H0:β1=0H1:β1≠051BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..InferencesAbouttheSlope:
tTestExampleH0:β1=0H1:β1≠0FromExceloutput:
CoefficientsStandardErrortStatP-valueIntercept98.2483358.033481.692960.12892SquareFeet0.109770.032973.329380.01039p-valueThereissufficientevidencethatsquarefootageaffectshouseprice.Decision:RejectH0,sincep-value<αPredictor
Coef
SECoef
T
PConstant
98.25
58.03
1.69
0.129SquareFeet
0.10977
0.03297
3.33
0.010FromMinitaboutput:52BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..FTestforSignificanceFTeststatistic:
where
whereFSTATfollowsanFdistributionwith1numerator
and(n–2)denominatordegreesoffreedom
53BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..F-TestforSignificance
ExcelOutputRegressionStatisticsMultipleR0.76211RSquare0.58082AdjustedRSquare0.52842StandardError41.33032Observations10ANOVA
dfSSMSFSignificanceFRegression118934.934818934.934811.08480.01039Residual813665.56521708.1957Total932600.5000
With1and8degreesoffreedomp-valuefortheF-Test54BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..F-TestforSignificance
MinitabOutputAnalysisofVariance
Source
DF
SS
MS
F
PRegression
1
18935
18935
11.08
0.010ResidualError
8
13666
1708Total
9
32600With1and8degreesoffreedomp-valuefortheF-Test55BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..H0:β1=0H1:β1≠0
=.05df1=1df2=8TestStatistic:Decision:Conclusion:RejectH0at
=0.05Thereissufficientevidencethathousesizeaffectssellingprice0
=.05F.05=5.32RejectH0DonotrejectH0CriticalValue:F
=5.32FTestforSignificance(continued)F56BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ConfidenceIntervalEstimate
fortheSlopeConfidenceIntervalEstimateoftheSlope:ExcelPrintoutforHousePrices:At95%levelofconfidence,theconfidenceintervalfortheslopeis(0.0337,0.1858)
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept98.2483358.033481.692960.12892-35.57720232.07386SquareFeet0.109770.032973.329380.010390.033740.18580d.f.=n-257BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..Sincetheunitsofthehousepricevariableis$1000s,weare95%confidentthattheaverageimpactonsalespriceisbetween$33.74and$185.80persquarefootofhousesize
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept98.2483358.033481.692960.12892-35.57720232.07386SquareFeet0.109770.032973.329380.010390.033740.18580This95%confidenceintervaldoesnotinclude0.Conclusion:Thereisasignificantrelationshipbetweenhousepriceandsquarefeetatthe.05levelofsignificanceConfidenceIntervalEstimate
fortheSlope(continued)58BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..tTestforaCorrelationCoefficientHypotheses H0:ρ=0 (nocorrelationbetweenXandY)
H1:ρ
≠0 (correlationexists)Teststatistic
(withn–2degreesoffreedom)59BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..t-testForACorrelationCoefficientIsthereevidenceofalinearrelationshipbetweensquarefeetandhousepriceatthe.05levelofsignificance?H0:ρ
=0(Nocorrelation)H1:ρ
≠0(correlationexists)
=.05,df
=
10-2=8(continued)60BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..t-testForACorrelationCoefficientConclusion:
Thereisevidenceofalinearassociationatthe5%levelofsignificanceDecision:
RejectH0RejectH0RejectH0a/2=.025-tα/2DonotrejectH00tα/2a/2=.025-2.30602.30603.329d.f.=10-2=8(continued)61BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..EstimatingMeanValuesandPredictingIndividualValuesYX
XiY=b0+b1Xi
ConfidenceIntervalforthemeanofY,givenXiPredictionIntervalforanindividualY,givenXiGoal:FormintervalsaroundYtoexpressuncertaintyaboutthevalueofYforagivenXiY
62BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..ConfidenceIntervalfor
theAverageY,GivenXConfidenceintervalestimateforthemeanvalueofYgivenaparticularXiSizeofintervalvariesaccordingtodistanceawayfrommean,
X63BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..PredictionIntervalfor
anIndividualY,GivenXPredictionintervalestimateforanIndividualvalueofYgivenaparticularXiThisextratermaddstotheintervalwidthtoreflecttheaddeduncertaintyforanindividualcase64BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..EstimationofMeanValues:ExampleFindthe95%confidenceintervalforthemeanpriceof2,000square-foothousesPredictedPriceYi=317.85($1,000s)
ConfidenceIntervalEstimateforμY|X=XTheconfidenceintervalendpointsare280.66and354.90,orfrom$280,660to$354,900i65BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..EstimationofIndividualValues:ExampleFindthe95%predictionintervalforanindividualhousewith2,000squarefeetPredictedPriceYi=317.85($1,000s)
PredictionIntervalEstimateforYX=XThepredictionintervalendpointsare215.50and420.07,orfrom$215,500to$420,070i66BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..FindingConfidenceand
PredictionIntervalsinExcelFromExcel,use
PHStat|regression|simplelinearregression…Checkthe
“confidenceandpredictionintervalforX=”
boxandentertheX-valueandconfidenceleveldesired67BusinessStatistics:AFirstCourse,5e?2009Prentice-Hall,Inc..InputvaluesFindingConfidenceand
PredictionIntervalsin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綠化維修及養(yǎng)護(hù)協(xié)議
- 2025年四川省綿陽市江油市八校中考物理一模試卷(含解析)
- 低碳材料采購合同示范
- 香港借款合同范本
- 菜籽油購銷合同范本
- 個(gè)人短期借款合同協(xié)議
- 江蘇省永豐初級中學(xué)2025年高三生物試題期末練習(xí)試卷含解析
- 云南省臨滄市鳳慶縣重點(diǎn)名校2024-2025學(xué)年初三下學(xué)期4月考生物試題試卷含解析
- 山東理工職業(yè)學(xué)院《畫法幾何與CAD制圖》2023-2024學(xué)年第二學(xué)期期末試卷
- 泰州職業(yè)技術(shù)學(xué)院《臨床室管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 設(shè)備維修規(guī)程
- 西川煤礦整合區(qū)礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- Unit 6 Lesson 1 A Medical Pioneer教學(xué)設(shè)計(jì) 高中英語北師大版(2019)必修第二冊
- 英語答題卡2023年全國小學(xué)生英語能力測評(NEPTP)低年級組
- 國家開放大學(xué)《哲學(xué)基礎(chǔ)》形考任務(wù)1-3參考答案
- 輸電線路外力破壞危害及特點(diǎn)
- 醫(yī)院工作中常見的法律風(fēng)險(xiǎn)和對策專家講座
- 2023年湖南省中學(xué)生生物學(xué)奧林匹克競賽選拔賽試題及答案
- 升壓站建筑工程施工作業(yè)指導(dǎo)書
- GB/T 24825-2009LED模塊用直流或交流電子控制裝置性能要求
- 2023年湖南公務(wù)員面試真題及解析匯總
評論
0/150
提交評論