2024屆山東省青島市青島大附屬中學數(shù)學九年級第一學期期末預測試題含解析_第1頁
2024屆山東省青島市青島大附屬中學數(shù)學九年級第一學期期末預測試題含解析_第2頁
2024屆山東省青島市青島大附屬中學數(shù)學九年級第一學期期末預測試題含解析_第3頁
2024屆山東省青島市青島大附屬中學數(shù)學九年級第一學期期末預測試題含解析_第4頁
2024屆山東省青島市青島大附屬中學數(shù)學九年級第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省青島市青島大附屬中學數(shù)學九年級第一學期期末預測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.已知3x=4y,則=()A. B. C. D.以上都不對2.若拋物線y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三點,則y1,y2,y3的大小關(guān)系為()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y13.用配方法將二次函數(shù)y=x2﹣8x﹣9化為y=a(x﹣h)2+k的形式為()A.y=(x﹣4)2+7 B.y=(x+4)2+7 C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣254.已知的半徑為,點到圓心的距離為,則點和的位置關(guān)系是()A.點在圓內(nèi) B.點在圓上 C.點在圓外 D.不能確定5.已知2x=3y,則下列比例式成立的是()A. B. C. D.6.已知點P(-1,4)在反比例函數(shù)的圖象上,則k的值是()A. B. C.4 D.-47.如圖,正方形的邊長為,點在邊上.四邊形也為正方形,設(shè)的面積為,則()A.S=2 B.S=2.4C.S=4 D.S與BE長度有關(guān)8.已知二次函數(shù)y=ax2+bx+c(a>0)經(jīng)過點M(﹣1,2)和點N(1,﹣2),則下列說法錯誤的是()A.a(chǎn)+c=0B.無論a取何值,此二次函數(shù)圖象與x軸必有兩個交點,且函數(shù)圖象截x軸所得的線段長度必大于2C.當函數(shù)在x<時,y隨x的增大而減小D.當﹣1<m<n<0時,m+n<9.下列方程中,是關(guān)于的一元二次方程的是()A. B. C. D.10.已知點P(1,-3)在反比例函數(shù)的圖象上,則的值是A.3 B.-3 C. D.11.關(guān)于的一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.不能確定12.關(guān)于反比例函數(shù),下列說法正確的是()A.點在它的圖象上 B.它的圖象經(jīng)過原點C.當時,y隨x的增大而增大 D.它的圖象位于第一、三象限二、填空題(每題4分,共24分)13.直角三角形的直角邊和斜邊分別是和,則此三角形的外接圓半徑長為__________.14.如圖,從一塊直徑是的圓形鐵皮上剪出一個圓心角是的扇形,如果將剪下來的扇形圍成一個圓錐,那么圓錐的底面圓的半徑為___________.15.兩個相似三角形的面積比為,其中較大的三角形的周長為,則較小的三角形的周長為__________.16.如圖等邊三角形內(nèi)接于,若的半徑為1,則圖中陰影部分的面積等于_________.17.如圖,矩形ABOC的頂點B、C分別在x軸、y軸上,頂點A在第一象限,點B的坐標為(,0),將線段OC繞點O順時針旋轉(zhuǎn)60°至線段OD,若反比例函數(shù)(k≠0)的圖象進過A、D兩點,則k值為_____.18.如圖,在平面直角坐標系中,?ABCD的頂點B,C在x軸上,A,D兩點分別在反比例函數(shù)y=﹣(x<0)與y=(x>0)的圖象上,若?ABCD的面積為4,則k的值為:_____.三、解答題(共78分)19.(8分)解方程:x(x﹣3)+6=2x.20.(8分)在如圖所示的網(wǎng)格圖中,已知和點(1)在網(wǎng)格圖中點M為位似中心,畫出,使其與的位似比為1:1.(1)寫出的各頂點的坐標.21.(8分)有一水果店,從批發(fā)市場按4元/千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費用300元,據(jù)預測,每天每千克價格上漲0.1元.(1)設(shè)x天后每千克蘋果的價格為p元,寫出p與x的函數(shù)關(guān)系式;(2)若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出y與x的函數(shù)關(guān)系式;(3)該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?22.(10分)某食品商店將甲、乙、丙3種糖果的質(zhì)量按配置成一種什錦糖果,已知甲、乙、丙三種糖果的單價分別為16元/、20元/、27元/.若將這種什錦糖果的單價定為這三種糖果單價的算術(shù)平均數(shù),你認為合理嗎?如果合理,請說明理由;如果不合理,請求出該什錦糖果合理的單價.23.(10分)如圖,賓館大廳的天花板上掛有一盞吊燈AB,某人從C點測得吊燈頂端A的仰角為,吊燈底端B的仰角為,從C點沿水平方向前進6米到達點D,測得吊燈底端B的仰角為.請根據(jù)以上數(shù)據(jù)求出吊燈AB的長度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)24.(10分)如圖,矩形AOBC放置在平面直角坐標系xOy中,邊OA在y軸的正半軸上,邊OB在x軸的正半軸上,拋物線的頂點為F,對稱軸交AC于點E,且拋物線經(jīng)過點A(0,2),點C,點D(3,0).∠AOB的平分線是OE,交拋物線對稱軸左側(cè)于點H,連接HF.(1)求該拋物線的解析式;(2)在x軸上有動點M,線段BC上有動點N,求四邊形EAMN的周長的最小值;(3)該拋物線上是否存在點P,使得四邊形EHFP為平行四邊形?如果存在,求出點P的坐標;如果不存在,請說明理由.25.(12分)如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進30海里到達B點,此時,測得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(結(jié)果保留根號).26.如圖,在中,點在邊上,點在邊上,且,.(1)求證:∽;(2)若,,求的長.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)3x=4y得出x=y(tǒng),再代入要求的式子進行計算即可.【題目詳解】∵3x=4y,∴x=y(tǒng),∴==;故選:A.【題目點撥】此題考查了比例的性質(zhì),熟練掌握比例的性質(zhì)即兩內(nèi)項之積等于兩外項之積是解題的關(guān)鍵.2、C【分析】根據(jù)拋物線y=ax2+2ax+4(a<0)可知該拋物線開口向下,可以求得拋物線的對稱軸,又因為拋物線具有對稱性,從而可以解答本題.【題目詳解】解:∵拋物線y=ax2+2ax+4(a<0),∴對稱軸為:x=,∴當x<?1時,y隨x的增大而增大,當x>?1時,y隨x的增大而減小,∵A(?,y1),B(?,y2),C(,y3)在拋物線上,且?<?,?0.5<,∴y3<y1<y2,故選:C.【題目點撥】本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是明確二次函數(shù)具有對稱性,在對稱軸的兩側(cè)它的增減性不一樣.3、C【分析】直接利用配方法進而將原式變形得出答案.【題目詳解】y=x2-8x-9=x2-8x+16-1=(x-4)2-1.故選C.【題目點撥】此題主要考查了二次函數(shù)的三種形式,正確配方是解題關(guān)鍵.4、B【解題分析】根據(jù)點與圓的位置關(guān)系進行判斷.【題目詳解】∵⊙O的半徑為6cm,P到圓心O的距離為6cm,

即OP=6,

∴點P在⊙O上.

故選:B.【題目點撥】本題考查了點與圓的位置關(guān)系:點與圓的位置關(guān)系有3種,設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,則有:點P在圓外?d>r;點P在圓上?d=r;點P在圓內(nèi)?d<r.5、C【分析】把各個選項依據(jù)比例的基本性質(zhì),兩內(nèi)項之積等于兩外項之積,已知的比例式可以轉(zhuǎn)化為等積式2x=3y,即可判斷.【題目詳解】A.變成等積式是:xy=6,故錯誤;B.變成等積式是:3x+3y=4y,即3x=y,故錯誤;C.變成等積式是:2x=3y,故正確;D.變成等積式是:5x+5y=3x,即2x+5y=0,故錯誤.故選C.【題目點撥】本題考查了判斷兩個比例式是否能夠互化的方法,即轉(zhuǎn)化為等積式,判斷是否相同即可.6、D【分析】根據(jù)反比例函數(shù)圖象上的點的坐標特征,將P(﹣1,1)代入反比例函數(shù)的解析式(k≠0),然后解關(guān)于k的方程,即可求得k=-1.【題目詳解】解:將P(﹣1,1)代入反比例函數(shù)的解析式(k≠0),解得:k=-1.故選D.【題目點撥】本題考查待定系數(shù)法求反比例函數(shù)解析式,掌握求解步驟正確計算是本題的解題關(guān)鍵.7、A【分析】連接FB,根據(jù)已知可得到?△ABC與△AFC是同底等高的三角形,由已知可求得△ABC的面積為大正方形面積的一半,從而不難求得S的值.【題目詳解】解:連接FB,∵四邊形EFGB為正方形∴∠FBA=∠BAC=45°,∴FB∥AC,∴△ABC與△AFC是同底等高的三角形,∵2S△ABC=S正ABCD,S正ABCD=2×2=4,∴S=2故選A.【題目點撥】本題利用了正方形的性質(zhì),內(nèi)錯角相等,兩直線平行的判定方法,及同底等高的三角形的面積相等的性質(zhì)求解.8、C【分析】根據(jù)二次函數(shù)的圖象和性質(zhì)對各項進行判斷即可.【題目詳解】解:∵函數(shù)經(jīng)過點M(﹣1,2)和點N(1,﹣2),∴a﹣b+c=2,a+b+c=﹣2,∴a+c=0,b=﹣2,∴A正確;∵c=﹣a,b=﹣2,∴y=ax2﹣2x﹣a,∴△=4+4a2>0,∴無論a為何值,函數(shù)圖象與x軸必有兩個交點,∵x1+x2=,x1x2=﹣1,∴|x1﹣x2|=2>2,∴B正確;二次函數(shù)y=ax2+bx+c(a>0)的對稱軸x=﹣=,當a>0時,不能判定x<時,y隨x的增大而減??;∴C錯誤;∵﹣1<m<n<0,a>0,∴m+n<0,>0,∴m+n<;∴D正確,故選:C.【題目點撥】本題考查了二次函數(shù)的問題,掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.9、C【解題分析】只有一個未知數(shù)且未知數(shù)的最高次數(shù)為2的整式方程為一元二次方程.【題目詳解】解:A選項,缺少a≠0條件,不是一元二次方程;B選項,分母上有未知數(shù),是分式方程,不是一元二次方程;C選項,經(jīng)整理后得x2+x=0,是關(guān)于x的一元二次方程;D選項,經(jīng)整理后是一元一次方程,不是一元二次方程;故選擇C.【題目點撥】本題考查了一元二次方程的定義.10、B【解題分析】根據(jù)點在曲線上,點的坐標滿足方程的關(guān)系,將P(1,-1)代入,得,解得k=-1.故選B.11、A【分析】根據(jù)根的判別式即可求解判斷.【題目詳解】∵△=b2-4ac=m2+4>0,故方程有兩個不相等的實數(shù)根,故選A.【題目點撥】此題主要考查一元二次方程根的判別式,解題的關(guān)鍵是熟知判別式的性質(zhì).12、D【分析】根據(jù)反比例函數(shù)的性質(zhì),k=2>0,函數(shù)位于一、三象限,在每一象限y隨x的增大而減?。绢}目詳解】解:A、把(2,-1)代入,得1=-1不成立,故選項錯誤;B、反比例函數(shù)圖像不經(jīng)過原點,故選項錯誤;C、當x>0時,y隨x的增大而減小,故選項錯誤.D、∵k=2>0,∴它的圖象在第一、三象限,故選項正確;故選D.【題目點撥】本題考查了反比例函數(shù)的性質(zhì):①當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②當k>0時,在同一個象限內(nèi),y隨x的增大而減??;當k<0時,在同一個象限,y隨x的增大而增大.二、填空題(每題4分,共24分)13、1【分析】根據(jù)直角三角形外接圓的半徑等于斜邊的一半解答即可.【題目詳解】解:根據(jù)直角三角形的外接圓的半徑是斜邊的一半,∵其斜邊為16∴其外接圓的半徑是1;故答案為:1.【題目點撥】此題要熟記直角三角形外接圓的半徑公式:外接圓的半徑等于斜邊的一半.14、【分析】根據(jù)題意可知扇形ABC圍成圓錐后的底面周長就是弧BC的弧長,再根據(jù)弧長公式和圓周長公式來求解.【題目詳解】解:作于點,連結(jié)OA、BC,∵∠BAC=90°∴BC是直徑,OB=OC,,圓錐的底面圓的半徑故答案為:【題目點撥】本題考查了扇形圍成圓錐形,圓錐的底面圓的周長就是原來扇形的弧長,找到它們的關(guān)系是解題的關(guān)鍵.15、1【分析】根據(jù)面積之比得出相似比,然后利用周長之比等于相似比即可得出答案.【題目詳解】∵兩個相似三角形的面積比為∴兩個相似三角形的相似比為∴兩個相似三角形的周長也比為∵較大的三角形的周長為∴較小的三角形的周長為故答案為:1.【題目點撥】本題主要考查相似三角形的性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.16、【分析】如圖(見解析),連接OC,根據(jù)圓的內(nèi)接三角形和等邊三角形的性質(zhì)可得,的面積等于的面積、以及的度數(shù),從而可得陰影部分的面積等于鈍角對應的扇形面積.【題目詳解】如圖,連接OC由圓的內(nèi)接三角形得,點O為垂直平分線的交點又因是等邊三角形,則其垂直平分線的交點與角平分線的交點重合,且點O到AB和AC的距離相等則故答案為:.【題目點撥】本題考查了圓的內(nèi)接三角形的性質(zhì)、等邊三角形的性質(zhì)、扇形面積公式,根據(jù)等邊三角形的性質(zhì)得出的面積等于的面積是解題關(guān)鍵.17、4【分析】過點D作DH⊥x軸于H,四邊形ABOC是矩形,由性質(zhì)有AB=CO,∠COB=90°,將OC繞點O順時針旋轉(zhuǎn)60°,OC=OD,∠COD=60°,可得∠DOH=30°,設(shè)DH=x,點D(x,x),點A(,2x),反比例函數(shù)(k≠0)的圖象經(jīng)過A、D兩點,構(gòu)造方程求出即可.【題目詳解】解:如圖,過點D作DH⊥x軸于H,∵四邊形ABOC是矩形,∴AB=CO,∠COB=90°,∵將線段OC繞點O順時針旋轉(zhuǎn)60°至線段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH=DH,設(shè)DH=x,∴點D(x,x),點A(,2x),∵反比例函數(shù)(k≠0)的圖象經(jīng)過A、D兩點,∴x×x=×2x,∴x=2,∴點D(2,2),∴k=2×2=4,故答案為:4.【題目點撥】本題考查反比例函數(shù)解析式問題,關(guān)鍵利用矩形的性質(zhì)與旋轉(zhuǎn)找到AB=CO=OD,∠DOH=30°,DH=x,會用x表示點D(x,x),點A(,2x),利用A、D在反比例函數(shù)(k≠0)的圖象上,構(gòu)造方程使問題得以解決.18、2【分析】連接OA、OD,如圖,利用平行四邊形的性質(zhì)得AD垂直y軸,則利用反比例函數(shù)的比例系數(shù)k的幾何意義得到S△OAE和S△ODE,所以S△OAD=+,,然后根據(jù)平行四邊形的面積公式可得到?ABCD的面積=2S△OAD=2,即可求出k的值.【題目詳解】連接OA、OD,如圖,∵四邊形ABCD為平行四邊形,∴AD垂直y軸,∴S△OAE=×|﹣3|=,S△ODE=×|k|,∴S△OAD=+,∵?ABCD的面積=2S△OAD=2.∴3+|k|=2,∵k>0,解得k=2,故答案為2.【題目點撥】此題考查平行四邊形的性質(zhì)、反比例函數(shù)的性質(zhì),反比例函數(shù)圖形上任意一點向兩個坐標軸作垂線構(gòu)成的矩形面積等于,再與原點連線分矩形為兩個三角形,面積等于.三、解答題(共78分)19、x1=2,x2=1.【分析】先去掉括號,再把移到等號的左邊,再根據(jù)因式分解法即可求解.【題目詳解】解:x(x﹣1)+6=2x,x2﹣1x+6﹣2x=0,x2﹣5x+6=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.【題目點撥】本題考查了解一元二次方程因式分解法,因式分解法解一元二次方程的一般步驟:①移項,使方程的右邊化為零;②將方程的左邊分解為兩個一次因式的乘積;③令每個因式分別為零,得到兩個一元一次方程;④解這兩個一元一次方程,它們的解就都是原方程的解.20、(1)圖見解析;(1).【分析】(1)先根據(jù)位似圖形的性質(zhì)和位似比得出點的位置,再順次連接點即可得;(1)先根據(jù)點的位置得出它們的坐標,再根據(jù)點分別為的中點即可得出答案.【題目詳解】(1)先連接,再根據(jù)位似圖形的性質(zhì)和位似比可得點分別為的中點,再順次連接點即可得到,如圖所示:(1),且點分別為的中點,,即.【題目點撥】本題考查了位似圖形的性質(zhì)和位似比、畫位似圖形,掌握理解位似圖形的性質(zhì)和位似比是解題關(guān)鍵.21、;(3)該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【分析】(1)根據(jù)按每千克元的市場價收購了這種蘋果千克,此后每天每千克蘋果價格會上漲元,進而得出天后每千克蘋果的價格為元與的函數(shù)關(guān)系;(2)根據(jù)每千克售價乘以銷量等于銷售總金額,求出即可;(3)利用總售價-成本-費用=利潤,進而求出即可.【題目詳解】根據(jù)題意知,;.當時,最大利潤12500元,答:該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【題目點撥】此題主要考查了二次函數(shù)的應用以及二次函數(shù)最值求法,得出與的函數(shù)關(guān)系是解題關(guān)鍵.22、這樣定價不合理,理由見解析【分析】根據(jù)加權(quán)平均數(shù)的概念即可解題.【題目詳解】解:這樣定價不合理.(元/).答:該什錦糖果合理的單價為18.7元/.【題目點撥】本題考查了加權(quán)平均數(shù)的實際計算,屬于簡單題,熟悉加權(quán)平均數(shù)的概念是解題關(guān)鍵.23、吊燈AB的長度約為1.1米.【分析】延長CD交AB的延長線于點E,構(gòu)建直角三角形,分別在兩個直角三角形△BDE和△AEC中利用正弦和正切函數(shù)求出AE長和BE長,即可求解.【題目詳解】解:延長CD交AB的延長線于點E,則∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=,∴BE=BD?sin∠BDE═6×sin60°=3≈5.19(米),DE=BD=3(米),在Rt△AEC中,tan∠ACE=,∴AE=CE?tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊燈AB的長度約為1.1米.【題目點撥】本題考查解直角三角形的應用,解答此題的關(guān)鍵是構(gòu)建直角三角形,利用銳角三角函數(shù)進行解答.24、(1)y=x2﹣x+2;(2);(3)不存在點P,使得四邊形EHFP為平行四邊形,理由見解析.【分析】(1)根據(jù)題意可以得到C的坐標,然后根據(jù)拋物線過點A、C、D可以求得該拋物線的解析式;(2)根據(jù)對稱軸和圖形可以畫出相應的圖形,然后找到使得四邊形EAMN的周長的取得最小值時的點M和點N即可,然后求出直線MN的解析式,然后直線MN與x軸的交點即可解答本題;(3)根據(jù)題意作出合適的圖形,然后根據(jù)平行四邊形的性質(zhì)可知EH=FP,而通過計算看EH和FP是否相等,即可解答本題.【題目詳解】解:(1)∵AE∥x軸,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴點C(4,2),設(shè)二次函數(shù)解析式為y=ax2+bx+2,∵C(4,2)和D(3,0)在該函數(shù)圖象上,∴,得,∴該拋物線的解析式為y=x2﹣x+2;(2)作點A關(guān)于x軸的對稱點A1,作點E關(guān)于直線BC的對稱點E1,連接A1E1,交x軸于點M,交線段BC于點N.根據(jù)對稱與最短路

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論