總體特征抽樣調(diào)查的設(shè)計與分析課件_第1頁
總體特征抽樣調(diào)查的設(shè)計與分析課件_第2頁
總體特征抽樣調(diào)查的設(shè)計與分析課件_第3頁
總體特征抽樣調(diào)查的設(shè)計與分析課件_第4頁
總體特征抽樣調(diào)查的設(shè)計與分析課件_第5頁
已閱讀5頁,還剩50頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

CHAPTER-6

SamplingerrorandconfidenceintervalsCHAPTER-6

SamplingerrorandcpopulationsamplestatisticParametererrorpopulationsamplestatisticParamSection1samplingerrorofmeanSection2tdistributionSection3confidenceintervalsforthepopulationmeanSection1samplingerrorofSection1

samplingerrorofmean

Section1

samplingerroroAsimplerandomsampleisasampleofsizendrawnfromapopulationofsizeNinsuchawaythateverypossiblerandomsamplesnhasthesameprobabilityofbeingselected.Variabilityamongthesimplerandomsamplesdrawnfromthesamepopulationiscalledsamplingvariability,andtheprobabilitydistributionthatcharacterizessomeaspectofthesamplingvariability,usuallythemeanbutnotalways,iscalledasamplingdistribution.Thesesamplingdistributionsallowustomakeobjectivestatementsaboutpopulationparameterswithoutmeasuringeveryobjectinthepopulation.Asimplerandomsampleisa[Example1]ThepopulationmeanofDBPintheChineseadultmenis72mmHgwithstandarddeviation5mmHg.10adultparticipantswaschosenrandomlyfromtheChineseadultmen,herewecancalculatethesamplemeanandsamplestandarddeviation.Supposingsampling100times,what’stheresult?[Example1]linkageNlinkageNIfrandomsamplesarerepeatedlydrawnfromapopulationwithameanμandstandarddeviationσ,wecanfind:1thesamplemeansaredifferentfromtheothers2Thesamplemeanarenotnecessaryequaltopopulationmeanμ3ThedistributionofsamplemeanissymmetricaboutμHOWTOEXPLORETHESAMPLINGDISTRIBUTIONFORTHEMEAN?IfrandomsamplesarerepeaThedifferencebetweensamplestatisticsandpopulationparameterorthedifferenceamongsamplestatisticsarecalledsamplingerror.ThedifferencebetweensamplInreallifewesampleonlyonce,butwerealizethatoursamplecomesfromatheoreticalsamplingdistributionofallpossiblesamplesofaparticularsize.Thesamplingdistributionconceptprovidesalinkbetweensamplingvariabilityandprobability.Choosingarandomsampleisachanceoperationandgeneratingthesamplingdistributionconsistsofmanyrepetitionsofthischanceoperation.InreallifewesampleonlyonWhensamplingfromanormallydistributedpopulationwithmeanμ,thedistributionofthesamplemeanwillbenormalwithmeanμCentrallimitTheoremWhensamplingfromanormally

=50

=10XPopulationdistributionn=4SamplingdistributionXn=16=50=10XPopulationdistriWhensamplingfromanonnormallydistributedpopulationwithmeanμ,thedistributionofthesamplemeanwillbeapproximatelynormalwithmeanμaslongasnislargerenough(n>50).CentrallimitTheoremWhensamplingfromanonnormalXXStandarderror(SE)canbeusedtoassesssamplingerrorofmean.Althoughsamplingerrorisinevitable,itcanbecalculatedaccurately.Standarderror(SE)canbetheoreticalvalueofSEestimationofSECalculationofstandarderror(SE)s↑→SE↑n↑→SE↓linkagetheoreticalvalueofSEestimatExample5.2Oneanalystchoserandomlyasample(n=100)andmeasuredtheirweightswithameanof72kgandstandarddeviationof15kg.Question:whatisthestandarderror?Example5.2Solution:Solution:

Exercise5.1Considerasampleofmeasurement100withmean121cmandstandarddeviation7cmdrawnfromanormalpopulation.Trytocomputeitsstandarderror.Exercise5.1Solution:Solution:Section2

tdistributionSection2

tdistribution1.Definition

N(μ,

2)N(0,1)1.DefinitionN(μ,2)N(0,RandomsamplingRandomsamplingUsuallystandarddeviationσisunknown,sowecanonlygets,thenwecancalculateUsuallystandarddeviationσiThissamplingdistributionwasdevelopedbyW.SGossettandpublishedunderthepseudonym“student”in1908.itis,therefore,sometimescalledthe“student’stdistributionandisreallyafamilyofdistributionsdependentonthen-1.Thissamplingdistribution

=n-1Zdistributiontdistribution=n-1Zdistributiontdistribu2.thecharacteristicsoftdistributiongraphFIG4thegraphoftdistributionwithdifferentdegreesoffreedom2.thecharacteristicsoftdi1symmetricabout0;2theshapeoftcurveisdeterminedbydegreeoffreedom,df=n-1.3t-distributionisapproximatedtostandardnormaldistributionwhennisinfinite.

1symmetricabout0;總體特征抽樣調(diào)查的設(shè)計與分析課件tcriticalvaluewithone-sidedprobability→t(α,

)tcriticalvaluewithtwo-sidedprobability→t(α/2,

)tcriticalvaluewithone-sideExample5.2Withn=15,findt0suchthatP(-t0≤t≤

t0)=0.90Example5.2Withn=15,findsolutionFromtvaluetable,df=15-1=14,thetwo-tailedshadedareaequals0.10,so

-t0=-1.761and

t0=1.761solutionFromtvaluetablSection3confidenceintervalsforthepopulationmeanSection3StatisticalmethodsdescriptivestatisticsinferentialstatisticsparameterestimationhypothesistestIntervalsestimationPointestimationStatisticalmethodsdescriptive1.Basicconcepts

Parameterestimation:Deducethepopulationparameterbasingonthesamplestatistics1.BasicconceptsPointEstimateAsingle-valuedestimate.Asingleelementchosenfromasamplingdistribution.Conveyslittleinformationabouttheactualvalueofthepopulationparameterabouttheaccuracyoftheestimate.PointEstimateConfidenceIntervalorIntervalEstimationAnintervalorrangeofvaluesbelievedtoincludetheunknownpopulationparameter.ConfidenceIntervalorIntervaPointestimationLowerlimitUpperlimitIntervalsestimationPointestimationLowerlimitUpp1-aa/2a/21-aa/2a/2

2.MethodsZdistribution1.σ

isknown2.σ

isunknown,n>50

tdistributionσ

isunknown,n≤50CICI2.MethodsZdistribution1.σExample5.3

Ahorticulturalscientistisdevelopinganewvarietyofapple.Oneoftheimportanttraits,inadditiontotaste,color,andstorability,istheuniformityofthefruitsize.Toestimatetheweightshesamples100maturefruitandcalculatesasamplemeanof220gandstandarddeviation5gDevelop95%confidenceintervalsforthepopulationmeanμfromhersampleExample5.3solution95%confidenceintervalsforthepopulationmeanisbetween219.02and220.98gsolution95%confidenceinteExerciseAforesterisinterestedinestimatingtheaveragenumberof‘counttrees’peracre.Arandomsampleofn=64oneacreisselectedandexamined.Theaverage(mean)numberofcounttreesperacreisfoundtobe27.3,withastandarddeviationof12.1.Usethisinformationtoconstruct95%confidenceintervalforμ.Exercisesolution95%confidenceintervalsforthepopulationmeanisbetween24.36and30.24solution95%confidenceinteTheforesteris95%confidentthatthepopulationmeanfor“counttrees”peracreisbetween24.36and30.24Theforesteris95%confidenExample5.4Theecologistsamples25plantsandmeasurestheirheights.Hefindsthatthesamplehasameanof15cmandasampledeviationof4cm.whatisthe95%confidenceintervalforthepopulationmeanμExample5.4solutiondf=25-1=24solutiondf=25-1=24Theplantecologistis95%confidentthatthepopulationmeanforheightsoftheseplantsisbetween13.349and16.65

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論