版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PhotobyAntRozetskyonUnsplash
04
Thestartingpoint
21
Aluminumindustryandothernon-
ferrousmetals
08
Theoptionsforthenet-zerorace
24
Foundries
12
Cementindustry
andothernon-
metallicminerals
27
Pulpandpaper
15
Chemicals
30
Food,drinkand
tobacco
18
Iron,steeland
aluminum
AllianzResearch
05April2023
Thegreen
industrialrevolution
InvestmentpathwaystodecarbonizetheindustrialsectorinEurope
AllianzResearch
2
Executive
Summary
MarkusZimmer
SeniorEconomistESG
markus.zimmer
@
ArneHolzhausen
HeadofInsurance,WealthandTrendResearch
arne.holzhausen
@
PatrickHoffmann
ResearchFellow
?Theindustrialsectorisresponsibleforroughlyonequarterofglobal
greenhouse-gas(GHG)emissions.Amixofmeasures,includingenergy-
efficiencyimprovements,usinghydrogenandbiomassasfeedstockor
fuel,producingheatthroughelectricmeansandadoptingcarbon-capturetechnologies,canreducethesector’scarbondioxideemissionstoalmostzero.Todecarbonizetheindustrysectorgloballywillrequirecumulative
investmentsofEUR2.7trnuntil2050.Ofthis,theEUneeds8%orEUR210bn,andhalfofthisforelectrificationinvestmentsalone.Therestisalmost
equallysplitbetweenhydrogenuse,innovativeproductionprocessesandnewtechnologies.Additionally,atEUR330bnuntil2050,theEUindustry’stotalinvestmentneedsforcarboncaptureandstorage(CCS)arealmost60%higherthantheinvestmentsinallotherindustrydecarbonization
measurescombined.
?Tomeettheseneeds,theEU28countriesneedtoinvestEUR3bnperyearbetween2020and2030,andEUR9bnannuallyfrom2030to2050,whentechnologieswillbereadyforfull-scaledeployment.Thepulp&paperindustryrequiresthelargestoverallinvestments–EUR78.4bnuntil2050
–followedbyiron&steel(EUR55.4bn)andcement(EUR37.6bn).Theseinvestmentswouldcutemissionsby265MtCO2(-92%),whichyieldsanaverageabatementinvestmentofEUR790pertCO2.
?Inthiscontext,governmentsshouldusetheinstrumentsattheirdisposal(e.g.subsidies,carbontaxes)toeffectivelyalignsectorpathwayswith
overarchingnet-zerotransitiongoals.
StefanLandau
ResearchAssistant
stefan.landau
@
AnandPamar
ResearchAssistant
anand.pamar
@
3
BilllionEUR
0
05April2023
Figure1:Investmentneedsintheindustrysectortoachievenet-zeroemissionsintheEU28
120
Others
100
Paperandpulp
Non-metallicminerals
80
Non-ferrousmetals
60
Ironandsteel
Foundries
40
Chemicals
20
2030
2050
Sources:IndustryPLAN,AllianzResearch.Note:BATreferstobestavailabletechnologies.IncludesEU+UK.SeeAppendixfordecompositionofinvestmentsbycountry.
Whatdoesittaketolimitglobalwarmingto1.5°C?
Checkoutourfivesectorpathwaysalreadypublished:
Thegreatgreenrenovation:buildingssectortransitionpathway
ACarbonfarming:Atransitionpathforagriculture&forestry
TheEUutilitytransition:Apathwaypoweredbysolarandwind
Jostlethecolossalfossil:Apathtotheenergysectortransition
TransportinazerocarbonEU:Pathwaysandopportunities
AllianzResearch
4
PhotobySolonUnsplash
Thestartingpoint
Overthepastfewdecades,theindustrysectorhas
madesignificantprogresstowardsreducingits
emissionsandimprovingenergyefficiency.By2010,Europeanindustryalonehadreduceditsemissionsby-29%,andby-39%by2020comparedto1990levels.1Despiteintenseinternationalcompetition,Europeanindustryhasmanagedtoadjustitsbusinesspracticesandmodelstoalignwiththecontinent’sclimateandenergygoals,allwhilemaintainingaviableeconomicapproach.
Nonetheless,thesectorisstillresponsiblefor650MtofCO2emissions–withCO2accountingforover90%of
directGHGemissionsfromindustryin2020.Thecement,ironandsteelandchemicalssectors(seeFigure2)arethelargestcontributorstoCO2emissionsandindustrialenergyconsumption:Thethreesectorsgeneratedthree-quartersofindustrialemissionsintheEU-28in2020.
1
EEA(2021).Dataviewerongreenhousegasemissionsandremovals
5
Othermachinery&equipment
Motorvehicles
2%
1%
Other
manufacturing
2%
Electricalequipment,
electronics,optics1%
Fabricatedmetal2%
Textiles1%
Basic
pharmaceuticals1%
Rubber&plastic
products
2%
05April2023
Figure2:EU-28industrialCO2emissionsin2020
Food,beverages,
tobacco
9%
Pulp,paper
5%
Chemicals
22%
Cement&non-metallic
minerals
28%
Other
12%
Iron&steel
22%
Aluminum,non-
ferrousmetals
2%
Sources:Eurostat,AllianzResearch(excludingemissionsfromrefineries).
Toaddtothis,allthreesectorsalsoproducesizeable
processemissions,rangingfrom25%to50%(seeFigure3).Thismattersbecauseindustrialprocessemissions
areparticularlyhardtoabate.Asaconsequence,eveninthenet-zerotransitionscenario,onlythree-quartersoftheseemissionsareexpectedtobeavoidedinthe
EU.Incontrast,otherindustrialsectorssuchasfoodandtobacco;paper,pulp,andprintandnonferrousmetals,
generatemainlyindirectanddirectemissions(Figure3),
withtheformerresultingmostlyfromcentrallyproduced
electricityandthelattermostlyfromheatgeneration.Thesearemoreorless“automatically”reducedbydecarbonizingenergyandheatgeneration.Forexample,nearly55%
ofCO2emissionsinthesesectorsresultfromtheuseof
centrallyproducedelectricity,primarilyfromnaturalgasandcoalforlow-andmedium-temperatureheatdemand.
6
GtCO2peryear
AllianzResearch
Figure3:GlobalCO2emissionsindifferentindustriesbyemissionsource(inGtCo2/yr)
0.90.7
2
0.5
0.8
0.3
1.3
0.3
1.1
0.1
0.3
3.6
2.9
0.1
0.1
0.1
0.1
Cement,
othernon-
metallic
minerals
IronandChemicalsOther
steelindustries
(incl.con-struction)
Processemissions
Indirect,machinedrive
andotheremissions
High-temperatureheat
(>500°C)
Medium-temperature
heat(100-500°C)
Low-temperatureheat
(<100°C)
Directemissions(mostly
heat)
Sources:
McKinsey(2018),
AllianzResearch.
Figure4illustratesthegargantuantaskofbringing
theindustryinlinewiththenet-zeropath:By2050,
emissionsmustbereducedby92%,withsomesectorsevengeneratingnegativeemissions,i.e.capturingmoreCO2emissionsthantheyproduce.ThefigurecomparestheNetworkforGreeningtheFinancialSystem(NGFS)
projectionswiththeEuropeanCommission(EC)
assessmentfortheEUGreenDeal.Thetwosourcesusedifferentdefinitionsfortheboundariesofthesectors
shown,aswellasfortheallocationofprocessemissionsandenergyemissions.Asaresult,thesectoralemissionsdifferandtheNGFSbaselineisslightlyhighersince
theOtherIndustriescategoryisbroader.Thetrendforfollowinga1.5°Cpathissimilarinbothassessmentsandnetemissionsin2050arecomparableaswell,
thoughNGFSexplicitlyreportsnegativeemissions.
Figure5showsthedevelopmentofthefinalenergyuseintheindustrialsectorsindifferentscenarios.Whiletherelativecompositionbetweenindustriesisnotexpectedtochangedramatically,cement,steelandchemicals
areexpectedtohavelowerenergy-savingpotential
thantheotherindustries.By2050,finalenergydemandintheCurrentPoliciesscenarioisexpectedtoincreaseby+14%relativetothe2020baseline,whileitisprojec-tedtodecreaseby-35%intheNetZero2050scenario.
MtCO2/year
NGFSBaseline
ECBaseline
NGFSCurrentPol.
ECCurrentPolicies
NGFSBelow2°C
NGFSNZ2050
ECNZ2050(MIX)
NGFSCurrentPol.
ECCurrentPolicies
NGFSBelow2°C
NGFSNZ2050
ECNZ2050(MIX)
EJ/yr
-100
2050
2020
0
05April2023
Figure4:EUindustrialCO2emissionsscenariocomparison
700
600
500
400
300
200
100
0
Otherindustries(NGFS)
Otherindustries(EC)
Textiles
Engineering
Food,beverage&tobacco
Pulp,paper&printing
Non-ferrousmetals
Cement,othernon-met.m.
Chemicals
Iron&steel
Processemissions
2030
Sources:NGFS,EuropeanCommission,AllianzResearch.
Figure5:Finalenergyusebysectorandscenario
Cement
14
Chemicals
Steel
12
Other
10
8
6
4
2
Baseline
2020
CurrentPolicy
Below2?C
2030
1.5°CNetZero
CurrentPolicy
Below2?C
2040
1.5°CNetZero
CurrentPolicy
Below2?C
2050
1.5°CNetZero
Sources:NGFS,AllianzResearch.
7
8
PhotobyClaytonCardinalliUnsplash
AllianzResearch
Theoptionsfor
thenet-zerorace
Thedifferentoptionsfordecarbonizationcanbe
broadlygroupedtogetherunderenergyefficiency,
fossil-fuelsubstitutionthroughsustainablefuelsor
electrificationandCCS.However,energyefficiency
andelectrificationoftengohand-in-handsince
theyarethetwosidesofthesamecoin.Takeheat
pumps,forexample,oneofthemaintechnologiesforelectrification,whichincreasetheefficiencyofenergyuseaswell.Whenevercoolingisneeded,heatwill
becreatedasaby-product,andtheoppositeistrueaswell.Heatpumpsmakeuseofthisrelationship
andreducewastedenergyinheatingorcooling
processes.Whiletheyarecurrentlyrelativelycommoninresidentialsettings,theyarefarlessestablishedforindustrialpurposes.Largeindustrialheatpumps(IHP)canrunonrenewableenergyorsourcewasteenergyfrombuildingsandprocesses.Theycanbeinstalledin
thermalprocesses,forexampleinthefood,paperor
chemicalsectors.2Forinstance,inthedairyindustry,
milkmustbecooledbeforetransportandconsumption,whileheatisneededforthepasteurizationprocess.Thewasteheatfromthecoolingprocesscanberecoveredandusedasaheatsourceforpasteurization.However,asignificantchallengeinmanyindustriesisthatsteamistypicallyusedtotransferheatacrossasite,resultinginhigh-temperaturesystemdesigns.Switchingto
airorliquidwaterrequiresnewpipes,pumpsand
processdesigns,whichentailhighinvestmentcostsandpotentialdisruptions.3
2
IEA(2014).ApplicationofIndustrialHeatPumps
3Forexamplesofpracticalapplicationsofheatpumpsinindustry,see
U.S.Dept.ofEnergy(2003)IndustrialHeatPumpsforSteam
;
Forthemethodologicalapproachtoemissionsavings,seeFfE(2019).
Small-scalemodelingofindividualGHGabatementmeasures
intheindustry
05April2023
9
CostofCO2abatement(2021$/tCO2saved)
Automotive
Pulp&Paper
SoybeanOil
Canesugarrefining
Meatprocessing
Beetsugar
Cannedfruits
Cannedvegetables
Dairy
Cornwet-milling
Beer
Textilewet-processing
Textileweaving
Heatpumpsleveragethepositiveeffectsofagreenerenergymix.Witheveryinstalledheatpump,overall
energyefficiencyisincreased.However,theneteffectofaheatpumpdependsonwhereitselectricitycomesfrom.Studieshaveshownthatinstallingaheatpumpthatrunsonelectricityfromfossilfuelsinsteadof
creatingheatfromgashasanegativenet-carbon
impact.Heatpumpsaremorecarbon-efficientthanelectricalresistanceheatersbecauseoftheirhigher
efficiency.Forexample,aheatpumpwithaCOP3.5?emitslessCO2perkWhthcomparedtonatural-gas-condensingboilerswhentheelectricitygridfactor
isbelow740gCO2/kWh,andoil-condensingboilers
whentheelectricitygridfactorisbelow980gCO2/
kWh.?Atthesametime,however,thismeansthat
installingmanyheatpumpsleveragesthepositiveneteffectsofgreenelectricity.Asrenewableenergytakesovertheenergymix,moreinstallingmoreheatpumpswillpushdowncarbonintensityfasteracrosssectors.
ThecostsofreducingCO2emissionsthroughheat
pumpsvarywidelyacrossindustries.AcomprehensivestudybyZuberi,HasanbeigiandMorrowanalyzesthe
abatementcostassociatedwiththeuseofheatpumpsindifferentindustries.?TheauthorsdevelopedCO2
abatementcostcurvesandenergy-conservationcost
curvesandestimatedthepotentialreductioninCO2
emissionsandenergysavingsfromtheapplicationof
IHPs.Theirresultsindicatethatelectrifyinghotwater
andsteam-generationsystemsin13industrialprocessescouldreduceannualCO2emissionsbyapproximately
17MtCO2inthebaseyear2021,witha100%adoptionrateofIHPapplications.However,withthecontinued
decarbonizationofelectricitygrids,thetotalCO2
abatementpotentialisexpectedtoreach54.5MtCO2
peryearin2035and57MtCO2in2050,equivalent
to5%oftotalgreenhouse-gasemissionsfromUS
manufacturingtoday,asshowninFigure6.Furthermore,theCO2abatementcostsareexpectedtorangefrom
USD55toUSD175pertCO2in2035(USD50toUSD155in2050),dependingontheindustrialprocess.FurtherdetailsonthecostsassociatedwithenergysavingscanbefoundinAppendix:industrialheatpumps.
Figure6:CO2abatementpotentialsthroughheatpumpsinUSmanufacturing
250
225
200
175
150
125
100
75
50
25
0
2035
2050
051015202530354045505560
CumulativeannualpotentialCO2abatement(MtCO2)
Sources:LawrenceBerkeleyNationalLaboratory,AllianzResearch.
?COP(CoefficientofPerformance)isdefinedastherelationshipbetweenthepower(kW)thatisdrawnoutoftheheatpumpascoo-lingorheat,andthepower(kW)thatissuppliedtothecompressor.ACOPof3.5reflectsthecurrentstateoftechnology.
?
WBCSD(2020).Heatpumptechnologies
?
LawrenceBerkeleyNationalLaboratory(2022).ElectrificationofU.S.ManufacturingWithIndustrialHeatPumps
AllianzResearch
10
Regardlessofhowlargetheeffortsinelectrification
andotherareasoftheenergytransitionare,itishighlyunlikelythatcumulativecarbonemissionsbetweennowand2050willbeconsistentwiththelevelsoftheNet-
Zero1.5°Cscenario.?Sectorssuchascementandsteelhavelimitedpotentialforemission-reductionsincesomelevelofCO2productionsimplycannotbeavoided.In
othersectors,decarbonizationeffortsaretechnicallypossiblebutonlyataprohibitivelyhighcost.Insuchsectors,CarbonCaptureandUtilizationorStorage
(CCUS)willplayavitalroleasaneconomicallyviabletechnologythatcanhelpsectorsreachtheirnet-zerogoals.
Usingtoday’stechnologies,CO2captureratesofover90%aretechnicallyfeasible.Carboncaptureand
storage(CCS)isaprocessthatinvolvescapturing
theCO2frompowergenerationoranotherindustrial
activity,transportingitandthenstoringitinrock
formationsdeepunderground.CCUSaddsthepotentialcommercialsaleanduseofthecapturedCO2.There
ispotentialforcarboncapturingwheneverfossil-or
biomass-basedfuelsarecombustedorevenbefore
combustion,forinstanceforblueorturquoisehydrogen.Itcanalsobeappliedintheammonia,iron,steelor
cementindustries.
TheimplementationofCCUShastwomajoruse-cases
acrossallindustries.Themoststraightforwardapplicationhappensinthecontextofcarbonremoval.Here,
technologiesforDirectAirCarbonCaptureandStorage
(DACCS)andBioenergywithCarbonCaptureandStorage(BECCS)playamajorrole.Bothtechnologiesresultin
theremovalofemissions,so-called“negativeemissions”,whenthecapturedcarbonispermanentlystored.
Secondly,CCUScanbeappliedtocaptureemissions
inindustrialprocesses.Thefocusherewilllieonthose
sectorswhereemissionscannotcompletelyberemoved
fromtheindustrialprocessandalternativenon-CO2
emittingprocessesarenotavailable,suchascement,steelorchemicals.
Figure7ashowstheaverageCCSinvestmentand7b
thecumulativeCCsinvestment,comparingtwodifferentsources.WhileETCprovidesadecompositionbyCCS
technologybysector,aswellasadditionalinvestment
needsinrenewableenergytosupplypowertoDACC,theNGFSanalysisshowsdetailsontheregionalsplitofCCSinvestments.Around17%oftotalinvestmentsoccurin
theEU.Notably,investmentinNature-BasedSolutions
(NBS)arenotincludedbuthavebeenaddressedinour
previousCarbonFarmingReport(see
AllianzResearch
(2022).CarbonFarming:Atransitionpathforagriculture
&forestry
).DACCtechnologiesare,however,usually
deployedatorinclosevicinitytopermanentstoragesites.Investmentintransportation(andstorage)willthusbe
significantlylowerforDACC.
?
ETC(2022).CarbonCapture,UtilisationandStorageintheEnergyTransition:VitalbutLimited
11
AverageyearlyinvestmentbnUSD
inadditionalcapturingcapacity
CumulativeinvestedbnUSD
incapturingcapacity
105
05April2023
Figure7a:CCSaverageglobalinvestments,USDbnperyear
250
200
150
100
50
0
NGFSCCSEU
NGFSCCSROW
214
RenewablePowerforDACC
DACC
Iron&Steel
Power
FossilFuelProcessing
142
BlueHydrogen
Cement
BECC
114
105
102
Transport
89
Storage
75
44
31
14
2
ETCNGFS
2020-2025
ETCNGFS
2025-2030
ETCNGFS
2030-2035
ETCNGFS
2035-2040
ETCNGFS
2040-2045
ETCNGFS
2045-2050
Sources:ETCbasescenario,NGFSNetZero2050scenario,AllianzResearch.
Figure7b:CCScumulativeglobalinvestments,USDbn
3,500
3,000
2,500
2,000
1,500
1,000
500
0
3,083
Storage
Cement
BlueHydrogen
FossilFuelProcessing
Transport
BECC
Power
2,015
Iron&Steel
DACC
RenewablePowerforDACC
1,304
735
291
71
202520302035204020452050
Sources:ETC,AllianzResearch.
12
PhotobyAlexLvrsonUnsplash
AllianzResearch
Cementindustryand
othernon-metallicminerals
Afterwater,concreteisthesecondmost-consumed
substanceintheworld?,andaccountsfor7%ofglobalemissions.Withoutconcrete,ourinfrastructurewouldcrumblesoontheroadtoanet-zeroglobaleconomy,thereisnowayaroundmakingitclean.Whilethenon-metallicmineralssectorconsistsofavarietyofdifferentproductssuchasglass,ceramics,bricksandgypsum,
cementandlimeproductiondominateemissions.Thisincludes1)theprocessemissionsfromthechemical
reactionthatturnslimestoneintocement;2)theenergyemissionsfromtheenergyusedtocreatethehigh
temperaturesneededincementproductionand3)toalowerextent,emissionsfromcementtransport.
Decarbonizingthecementsectorisachallengingtaskmainlyduetoprocessemissions,whicharedifficult
toavoid.Partofthesolutionliesindevelopingnew
cementchemistries.Tomeettheambitionofachievingnet-zeroemissionsby2050inthecementsector,the
clinker-to-cementratio?needstobereducedand
innovativetechnologiesdeployed,suchascarbon
captureandstorageandclinkersmadefromalternative
rawmaterials.10Theglobalaverageclinker-cement
ratioisabout0.81,withthebalancecomprisinggypsumandadditivessuchasblastfurnaceslag,flyashand
naturalpozzolana.Asclinkerproductionisthemost
energy-intensiveandCO2-emittingstepofthecement-makingprocess,reductionsintheclinker-cement
ratio(throughtheuseofclinkersubstitutes)would
lowerenergyuseandprocessCO2emissions.Anotherpossiblewaytoreduceenergyandprocessemissionsincementproductionistoblendcementswithincreasedproportionsofalternative(non-clinker)feedstocks,suchasvolcanicash,granulatedblastfurnaceslagfromironproductionorflyashfromcoal-firedpowergeneration.GovernmentscanstimulateinvestmentandinnovationintheseareasbyfundingR&Danddemonstrations,
creatingdemandfornear-zero-emissioncement
andadoptingmandatoryCO2emission-reduction
policies.ReducingCO2emissionswhileproducing
enoughcementtomeetdemandwillbechallenging,especiallyasdemandgrowthisexpectedtoresumeasthepotentialslowdowninChineseactivityisoffsetbyexpansioninothermarkets.11
?Gagg2014.Cementandconcreteasanengineeringmaterial:Anhistoricappraisalandcasestudyanalysis.EngineeringFailureAnalysis.
/10.1016/j.engfailanal.2014.02.004
?Cementisabindingagentthatsetsandhardenstoadheretobuildingunitssuchasstones,bricksortiles.Clinkerisanodularmate-rialwhichisusedasthebinderincementproducts.Theprimaryuseofclinkeristomanufacturecement.
10
UNClimateTechnologyCentre&Network(2010).Clinkerreplacement
11IEA(2022).Trackingreport-Cement
13
Ontheotherhand,carbonemissionsfromheatused
incementproductioncouldbereducedthrougha
switchfromcoaltogas,andeventuallyfullyeliminatedthroughheatelectrification,andtheuseofbiomass
orhydrogen.However,eachoftheseoptionswillentailsignificantadditionalcosts.
Lastbutnotleast,reducingcarbonemissionsfrom
cementwillalsorequirebetterdemandmanagement.
Theuseoftimberasasubstituteforbuildingmaterial
isnotwithoutitschallenges.Therefore,globalcementproductionisexpectedtocontinuetogrowworldwide:whileitisprojectedtostagnateinEuropebetween2030and2050,itwillincreaseinIndia,otherdeveloping
AsiancountriesandAfrica.However,demandgrowthcouldbesloweddownviagreatermaterialefficiencyinbuildingdesign,wastereduction,maximizingthe
lifeofbuildingsandinfrastructureandsomematerialscircularity.
CementemissionsarebeingaddressedbytheEU
EmissionsTradingSystem(ETS)andseveralother
countries,includingCanada,SouthKoreaandChina,havealsointroducedpricingschemes.Additionally,
theEUisdevelopingacarbonborderadjustment
mechanismforindustries,includingcement,whichaimsatlimitingcarbonleakageandincentivizingstronger
emissionsmeasuresinforeigncountries.12Many
governmentsandorganizationshavealsoreleasedroadmapsfordecarbonizingthecementsectorandreachingnetzeroby205013.
05April2023
Forthis,itiscrucialtocommercializeCCSby2030.
Therefore,governmentsmustplanandconstruct
infrastructuretotransportandstorecapturedCO2asthelackofsuchinfrastructurecancausesignificantdelaysintechnologicaldeployment.Transporting
CO2throughpipelinesisthemostsuitableway,andgovernmentsmustgainpublicsupportforbuildingthesepipelinesandCO2storagefacilities.
AnextensiveanalysisoftherequiredabatementcostsassociatedwiththeimplementationofthenecessarymeasuresfromelectrificationtoCCScanbeconducted
usingtheIndustryPLAN14model(Johannsen&
Mathiesen2023).Employingabottom-upapproach,
themodeldefinesspecificmeasuresforthesectorwithadjustableimplementationrateparametersandyieldsresultsonenergysavingsandinvestmentsforthe
EU+UK.TheaggregateandaveragedinvestmentspertonofCO2abatedforthenon-metallicmineralssector(cement,ceramicsandglass)showsarelativelystablerelationshipatvariouslevelsofemissionintensityof
energyuse,witharoundEUR615/tCO2(Figure8a).In
theothersectorsanalyzed,averageinvestmentneedswillrisemorestronglysincemarginalcostincreasesforthelastmeasurestoreachzeroemissionsaretypicallyhigherthanforthe“l(fā)ow-hangingfruits”implementedfirst.AsseeninFigure8a,implementingthesuggestedmeasuresfromtheIndustryPLAN15modelisestimatedtoresultinadecreaseoftheemissionintensityfrom
41.7tCO2/MJin2030to6.6tCO2/MJby2050.AnalyzingtheMaterialEconomics(2019)resultsforthecement
sector(Figure8b)andaggregatingtheresultsyieldsanaverageglobalinvestmentofaroundEUR250/tCO2toreduceemissions.16
12IntheterminologyoftheEuropeanCommission,‘carbonleakage’doesnotonlyrefertoemissionsjustbeingemittedinanother
countryinsteadoftheEU,whichwouldn’thelptheglobalclimateambition.Rather‘carbonleakage’alsoreferstothevalueadded
lfodgueAppendixGCCARoadmap.Anotherroadmap
isthe
IEACementTechnologyRoadmap
whichbuildsonthelong-standingcollaborationoftheIEAwiththeCementSustainabilityInitiative(CSI)oftheWorldBusinessCouncilforSustainableDevelopment(WBCSD).
14IndustryPLANchoosesthedecarbonizationactionsinabottom-upapproachfromamerit-orderoftechnologyoptions.
15MoreonthebackgroundofthetechnologiesandmitigationpotentialscanbefoundinAppendix:Industryemissionreductionpotentials.
16Caution:ThestatedIndustryPLANnumbersrefertoreducingtheemissionintensityofenergyuse(tCO2/MJ)whiletheMaterial
Economicsmodelnumbersrefertoreducingemissions(%CO2totalemissionreduction).ThedotsintheMaterialeconomicsgraph
showtheactualcalculatedaverageabatementcostsinthemodelatdifferingemissionreductionlevels,whilethelineshowstheOLSestimatederivedfromthecalculatedvaluesshownasdots.
14
AverageCAPEX/Abatement(EUR/tCO2)
AverageCAPEX/Abatement(EUR/tCO2)
AllianzResearch
Figure8a:Averageinvestmentinthecement/non-metallicmineralsmetalssector(EUR/tCO2)neededtoreachemissionintensitytargetsonthepathtonetzero
618
617
616
615
614
613
612
611
610
609
608
41.7tCO2/MJ(2030)6.6tCO2/MJ(2050)
NetZeropathwaycompliantemissionintensityofenergyinrespectiveyear
Sources:IndustryPLAN,AllianzResearch.Notes:CoverageEU+UK.Non-metallicmineralsincludecement,ceramicsandglass.
Figure8b:Averagecementsectorinvestment(inEUR/tCO2)relativetoemissionreductiontarget
300
250
200
150
100
50
0
0%20%40%60%80%100%
EmissionReduction
Sources:MaterialEconomics,AllianzResearch.Notes:CoverageisEU.
15
PhotobySonikaAgarwalonUnsplash
05April2023
Chemicals
ThechemicalsectorplaysacrucialroleintheEuropeaneconomy,withchemicalsbeingintegraltomajor
Europeanvaluechainssuchaspharmaceuticals,
electronics,batteriesforelectricvehiclesand
constructionmaterials.TheEU-27isthesecond-largestchemicalsproducerglobally,generatingEUR499bn
insalesin2020andaccountingforaround7%of
manufacturingoutputbyturnover,whichmakesitthe
fourth-largestindustryintheEU.Thechemicalindustry
employshighlyskilledworkersandboasts67%greater
laborproductivitythanthemanufacturingsectoraverage.
WhilechemicalproductionintheEU-27hasjumpedby+47%,GHGemissionshavedecreasedby-54
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國裘皮手套數(shù)據(jù)監(jiān)測研究報告
- 基于數(shù)據(jù)融合的河道模型數(shù)據(jù)底板構(gòu)建關(guān)鍵技術(shù)研究
- 2025年版注塑設(shè)備售后服務(wù)與技術(shù)支持合同范本3篇
- 2025年個人砌磚工程承包建筑材料采購與質(zhì)量監(jiān)管合同2篇
- 2025年度美容院品牌形象設(shè)計及推廣合同8篇
- 二零二五年度成都離婚協(xié)議公證法律咨詢及服務(wù)合同3篇
- 二零二四年度醫(yī)療機構(gòu)醫(yī)療器械質(zhì)量控制合同3篇
- 二零二五年度果園承包與農(nóng)業(yè)廢棄物資源化利用合同7篇
- 二零二五版美團外賣商家知識產(chǎn)權(quán)保護與使用合同4篇
- 二零二五年度程序員入職知識產(chǎn)權(quán)保護合同4篇
- 2024年山東省泰安市高考物理一模試卷(含詳細答案解析)
- 護理指南手術(shù)器械臺擺放
- 腫瘤患者管理
- 2025年中國航空部附件維修行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預測報告
- 2025春夏運動戶外行業(yè)趨勢白皮書
- 《法制宣傳之盜竊罪》課件
- 通信工程單位勞動合同
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓課件
- 零部件測繪與 CAD成圖技術(shù)(中職組)沖壓機任務(wù)書
- 2024年計算機二級WPS考試題庫380題(含答案)
- 高低壓配電柜產(chǎn)品營銷計劃書
評論
0/150
提交評論