Allianz+綠色工業(yè)革命-歐洲工業(yè)部門脫碳的投資途_第1頁
Allianz+綠色工業(yè)革命-歐洲工業(yè)部門脫碳的投資途_第2頁
Allianz+綠色工業(yè)革命-歐洲工業(yè)部門脫碳的投資途_第3頁
Allianz+綠色工業(yè)革命-歐洲工業(yè)部門脫碳的投資途_第4頁
Allianz+綠色工業(yè)革命-歐洲工業(yè)部門脫碳的投資途_第5頁
已閱讀5頁,還剩73頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PhotobyAntRozetskyonUnsplash

04

Thestartingpoint

21

Aluminumindustryandothernon-

ferrousmetals

08

Theoptionsforthenet-zerorace

24

Foundries

12

Cementindustry

andothernon-

metallicminerals

27

Pulpandpaper

15

Chemicals

30

Food,drinkand

tobacco

18

Iron,steeland

aluminum

AllianzResearch

05April2023

Thegreen

industrialrevolution

InvestmentpathwaystodecarbonizetheindustrialsectorinEurope

AllianzResearch

2

Executive

Summary

MarkusZimmer

SeniorEconomistESG

markus.zimmer

@

ArneHolzhausen

HeadofInsurance,WealthandTrendResearch

arne.holzhausen

@

PatrickHoffmann

ResearchFellow

?Theindustrialsectorisresponsibleforroughlyonequarterofglobal

greenhouse-gas(GHG)emissions.Amixofmeasures,includingenergy-

efficiencyimprovements,usinghydrogenandbiomassasfeedstockor

fuel,producingheatthroughelectricmeansandadoptingcarbon-capturetechnologies,canreducethesector’scarbondioxideemissionstoalmostzero.Todecarbonizetheindustrysectorgloballywillrequirecumulative

investmentsofEUR2.7trnuntil2050.Ofthis,theEUneeds8%orEUR210bn,andhalfofthisforelectrificationinvestmentsalone.Therestisalmost

equallysplitbetweenhydrogenuse,innovativeproductionprocessesandnewtechnologies.Additionally,atEUR330bnuntil2050,theEUindustry’stotalinvestmentneedsforcarboncaptureandstorage(CCS)arealmost60%higherthantheinvestmentsinallotherindustrydecarbonization

measurescombined.

?Tomeettheseneeds,theEU28countriesneedtoinvestEUR3bnperyearbetween2020and2030,andEUR9bnannuallyfrom2030to2050,whentechnologieswillbereadyforfull-scaledeployment.Thepulp&paperindustryrequiresthelargestoverallinvestments–EUR78.4bnuntil2050

–followedbyiron&steel(EUR55.4bn)andcement(EUR37.6bn).Theseinvestmentswouldcutemissionsby265MtCO2(-92%),whichyieldsanaverageabatementinvestmentofEUR790pertCO2.

?Inthiscontext,governmentsshouldusetheinstrumentsattheirdisposal(e.g.subsidies,carbontaxes)toeffectivelyalignsectorpathwayswith

overarchingnet-zerotransitiongoals.

StefanLandau

ResearchAssistant

stefan.landau

@

AnandPamar

ResearchAssistant

anand.pamar

@

3

BilllionEUR

0

05April2023

Figure1:Investmentneedsintheindustrysectortoachievenet-zeroemissionsintheEU28

120

Others

100

Paperandpulp

Non-metallicminerals

80

Non-ferrousmetals

60

Ironandsteel

Foundries

40

Chemicals

20

2030

2050

Sources:IndustryPLAN,AllianzResearch.Note:BATreferstobestavailabletechnologies.IncludesEU+UK.SeeAppendixfordecompositionofinvestmentsbycountry.

Whatdoesittaketolimitglobalwarmingto1.5°C?

Checkoutourfivesectorpathwaysalreadypublished:

Thegreatgreenrenovation:buildingssectortransitionpathway

ACarbonfarming:Atransitionpathforagriculture&forestry

TheEUutilitytransition:Apathwaypoweredbysolarandwind

Jostlethecolossalfossil:Apathtotheenergysectortransition

TransportinazerocarbonEU:Pathwaysandopportunities

AllianzResearch

4

PhotobySolonUnsplash

Thestartingpoint

Overthepastfewdecades,theindustrysectorhas

madesignificantprogresstowardsreducingits

emissionsandimprovingenergyefficiency.By2010,Europeanindustryalonehadreduceditsemissionsby-29%,andby-39%by2020comparedto1990levels.1Despiteintenseinternationalcompetition,Europeanindustryhasmanagedtoadjustitsbusinesspracticesandmodelstoalignwiththecontinent’sclimateandenergygoals,allwhilemaintainingaviableeconomicapproach.

Nonetheless,thesectorisstillresponsiblefor650MtofCO2emissions–withCO2accountingforover90%of

directGHGemissionsfromindustryin2020.Thecement,ironandsteelandchemicalssectors(seeFigure2)arethelargestcontributorstoCO2emissionsandindustrialenergyconsumption:Thethreesectorsgeneratedthree-quartersofindustrialemissionsintheEU-28in2020.

1

EEA(2021).Dataviewerongreenhousegasemissionsandremovals

5

Othermachinery&equipment

Motorvehicles

2%

1%

Other

manufacturing

2%

Electricalequipment,

electronics,optics1%

Fabricatedmetal2%

Textiles1%

Basic

pharmaceuticals1%

Rubber&plastic

products

2%

05April2023

Figure2:EU-28industrialCO2emissionsin2020

Food,beverages,

tobacco

9%

Pulp,paper

5%

Chemicals

22%

Cement&non-metallic

minerals

28%

Other

12%

Iron&steel

22%

Aluminum,non-

ferrousmetals

2%

Sources:Eurostat,AllianzResearch(excludingemissionsfromrefineries).

Toaddtothis,allthreesectorsalsoproducesizeable

processemissions,rangingfrom25%to50%(seeFigure3).Thismattersbecauseindustrialprocessemissions

areparticularlyhardtoabate.Asaconsequence,eveninthenet-zerotransitionscenario,onlythree-quartersoftheseemissionsareexpectedtobeavoidedinthe

EU.Incontrast,otherindustrialsectorssuchasfoodandtobacco;paper,pulp,andprintandnonferrousmetals,

generatemainlyindirectanddirectemissions(Figure3),

withtheformerresultingmostlyfromcentrallyproduced

electricityandthelattermostlyfromheatgeneration.Thesearemoreorless“automatically”reducedbydecarbonizingenergyandheatgeneration.Forexample,nearly55%

ofCO2emissionsinthesesectorsresultfromtheuseof

centrallyproducedelectricity,primarilyfromnaturalgasandcoalforlow-andmedium-temperatureheatdemand.

6

GtCO2peryear

AllianzResearch

Figure3:GlobalCO2emissionsindifferentindustriesbyemissionsource(inGtCo2/yr)

0.90.7

2

0.5

0.8

0.3

1.3

0.3

1.1

0.1

0.3

3.6

2.9

0.1

0.1

0.1

0.1

Cement,

othernon-

metallic

minerals

IronandChemicalsOther

steelindustries

(incl.con-struction)

Processemissions

Indirect,machinedrive

andotheremissions

High-temperatureheat

(>500°C)

Medium-temperature

heat(100-500°C)

Low-temperatureheat

(<100°C)

Directemissions(mostly

heat)

Sources:

McKinsey(2018),

AllianzResearch.

Figure4illustratesthegargantuantaskofbringing

theindustryinlinewiththenet-zeropath:By2050,

emissionsmustbereducedby92%,withsomesectorsevengeneratingnegativeemissions,i.e.capturingmoreCO2emissionsthantheyproduce.ThefigurecomparestheNetworkforGreeningtheFinancialSystem(NGFS)

projectionswiththeEuropeanCommission(EC)

assessmentfortheEUGreenDeal.Thetwosourcesusedifferentdefinitionsfortheboundariesofthesectors

shown,aswellasfortheallocationofprocessemissionsandenergyemissions.Asaresult,thesectoralemissionsdifferandtheNGFSbaselineisslightlyhighersince

theOtherIndustriescategoryisbroader.Thetrendforfollowinga1.5°Cpathissimilarinbothassessmentsandnetemissionsin2050arecomparableaswell,

thoughNGFSexplicitlyreportsnegativeemissions.

Figure5showsthedevelopmentofthefinalenergyuseintheindustrialsectorsindifferentscenarios.Whiletherelativecompositionbetweenindustriesisnotexpectedtochangedramatically,cement,steelandchemicals

areexpectedtohavelowerenergy-savingpotential

thantheotherindustries.By2050,finalenergydemandintheCurrentPoliciesscenarioisexpectedtoincreaseby+14%relativetothe2020baseline,whileitisprojec-tedtodecreaseby-35%intheNetZero2050scenario.

MtCO2/year

NGFSBaseline

ECBaseline

NGFSCurrentPol.

ECCurrentPolicies

NGFSBelow2°C

NGFSNZ2050

ECNZ2050(MIX)

NGFSCurrentPol.

ECCurrentPolicies

NGFSBelow2°C

NGFSNZ2050

ECNZ2050(MIX)

EJ/yr

-100

2050

2020

0

05April2023

Figure4:EUindustrialCO2emissionsscenariocomparison

700

600

500

400

300

200

100

0

Otherindustries(NGFS)

Otherindustries(EC)

Textiles

Engineering

Food,beverage&tobacco

Pulp,paper&printing

Non-ferrousmetals

Cement,othernon-met.m.

Chemicals

Iron&steel

Processemissions

2030

Sources:NGFS,EuropeanCommission,AllianzResearch.

Figure5:Finalenergyusebysectorandscenario

Cement

14

Chemicals

Steel

12

Other

10

8

6

4

2

Baseline

2020

CurrentPolicy

Below2?C

2030

1.5°CNetZero

CurrentPolicy

Below2?C

2040

1.5°CNetZero

CurrentPolicy

Below2?C

2050

1.5°CNetZero

Sources:NGFS,AllianzResearch.

7

8

PhotobyClaytonCardinalliUnsplash

AllianzResearch

Theoptionsfor

thenet-zerorace

Thedifferentoptionsfordecarbonizationcanbe

broadlygroupedtogetherunderenergyefficiency,

fossil-fuelsubstitutionthroughsustainablefuelsor

electrificationandCCS.However,energyefficiency

andelectrificationoftengohand-in-handsince

theyarethetwosidesofthesamecoin.Takeheat

pumps,forexample,oneofthemaintechnologiesforelectrification,whichincreasetheefficiencyofenergyuseaswell.Whenevercoolingisneeded,heatwill

becreatedasaby-product,andtheoppositeistrueaswell.Heatpumpsmakeuseofthisrelationship

andreducewastedenergyinheatingorcooling

processes.Whiletheyarecurrentlyrelativelycommoninresidentialsettings,theyarefarlessestablishedforindustrialpurposes.Largeindustrialheatpumps(IHP)canrunonrenewableenergyorsourcewasteenergyfrombuildingsandprocesses.Theycanbeinstalledin

thermalprocesses,forexampleinthefood,paperor

chemicalsectors.2Forinstance,inthedairyindustry,

milkmustbecooledbeforetransportandconsumption,whileheatisneededforthepasteurizationprocess.Thewasteheatfromthecoolingprocesscanberecoveredandusedasaheatsourceforpasteurization.However,asignificantchallengeinmanyindustriesisthatsteamistypicallyusedtotransferheatacrossasite,resultinginhigh-temperaturesystemdesigns.Switchingto

airorliquidwaterrequiresnewpipes,pumpsand

processdesigns,whichentailhighinvestmentcostsandpotentialdisruptions.3

2

IEA(2014).ApplicationofIndustrialHeatPumps

3Forexamplesofpracticalapplicationsofheatpumpsinindustry,see

U.S.Dept.ofEnergy(2003)IndustrialHeatPumpsforSteam

;

Forthemethodologicalapproachtoemissionsavings,seeFfE(2019).

Small-scalemodelingofindividualGHGabatementmeasures

intheindustry

05April2023

9

CostofCO2abatement(2021$/tCO2saved)

Automotive

Pulp&Paper

SoybeanOil

Canesugarrefining

Meatprocessing

Beetsugar

Cannedfruits

Cannedvegetables

Dairy

Cornwet-milling

Beer

Textilewet-processing

Textileweaving

Heatpumpsleveragethepositiveeffectsofagreenerenergymix.Witheveryinstalledheatpump,overall

energyefficiencyisincreased.However,theneteffectofaheatpumpdependsonwhereitselectricitycomesfrom.Studieshaveshownthatinstallingaheatpumpthatrunsonelectricityfromfossilfuelsinsteadof

creatingheatfromgashasanegativenet-carbon

impact.Heatpumpsaremorecarbon-efficientthanelectricalresistanceheatersbecauseoftheirhigher

efficiency.Forexample,aheatpumpwithaCOP3.5?emitslessCO2perkWhthcomparedtonatural-gas-condensingboilerswhentheelectricitygridfactor

isbelow740gCO2/kWh,andoil-condensingboilers

whentheelectricitygridfactorisbelow980gCO2/

kWh.?Atthesametime,however,thismeansthat

installingmanyheatpumpsleveragesthepositiveneteffectsofgreenelectricity.Asrenewableenergytakesovertheenergymix,moreinstallingmoreheatpumpswillpushdowncarbonintensityfasteracrosssectors.

ThecostsofreducingCO2emissionsthroughheat

pumpsvarywidelyacrossindustries.AcomprehensivestudybyZuberi,HasanbeigiandMorrowanalyzesthe

abatementcostassociatedwiththeuseofheatpumpsindifferentindustries.?TheauthorsdevelopedCO2

abatementcostcurvesandenergy-conservationcost

curvesandestimatedthepotentialreductioninCO2

emissionsandenergysavingsfromtheapplicationof

IHPs.Theirresultsindicatethatelectrifyinghotwater

andsteam-generationsystemsin13industrialprocessescouldreduceannualCO2emissionsbyapproximately

17MtCO2inthebaseyear2021,witha100%adoptionrateofIHPapplications.However,withthecontinued

decarbonizationofelectricitygrids,thetotalCO2

abatementpotentialisexpectedtoreach54.5MtCO2

peryearin2035and57MtCO2in2050,equivalent

to5%oftotalgreenhouse-gasemissionsfromUS

manufacturingtoday,asshowninFigure6.Furthermore,theCO2abatementcostsareexpectedtorangefrom

USD55toUSD175pertCO2in2035(USD50toUSD155in2050),dependingontheindustrialprocess.FurtherdetailsonthecostsassociatedwithenergysavingscanbefoundinAppendix:industrialheatpumps.

Figure6:CO2abatementpotentialsthroughheatpumpsinUSmanufacturing

250

225

200

175

150

125

100

75

50

25

0

2035

2050

051015202530354045505560

CumulativeannualpotentialCO2abatement(MtCO2)

Sources:LawrenceBerkeleyNationalLaboratory,AllianzResearch.

?COP(CoefficientofPerformance)isdefinedastherelationshipbetweenthepower(kW)thatisdrawnoutoftheheatpumpascoo-lingorheat,andthepower(kW)thatissuppliedtothecompressor.ACOPof3.5reflectsthecurrentstateoftechnology.

?

WBCSD(2020).Heatpumptechnologies

?

LawrenceBerkeleyNationalLaboratory(2022).ElectrificationofU.S.ManufacturingWithIndustrialHeatPumps

AllianzResearch

10

Regardlessofhowlargetheeffortsinelectrification

andotherareasoftheenergytransitionare,itishighlyunlikelythatcumulativecarbonemissionsbetweennowand2050willbeconsistentwiththelevelsoftheNet-

Zero1.5°Cscenario.?Sectorssuchascementandsteelhavelimitedpotentialforemission-reductionsincesomelevelofCO2productionsimplycannotbeavoided.In

othersectors,decarbonizationeffortsaretechnicallypossiblebutonlyataprohibitivelyhighcost.Insuchsectors,CarbonCaptureandUtilizationorStorage

(CCUS)willplayavitalroleasaneconomicallyviabletechnologythatcanhelpsectorsreachtheirnet-zerogoals.

Usingtoday’stechnologies,CO2captureratesofover90%aretechnicallyfeasible.Carboncaptureand

storage(CCS)isaprocessthatinvolvescapturing

theCO2frompowergenerationoranotherindustrial

activity,transportingitandthenstoringitinrock

formationsdeepunderground.CCUSaddsthepotentialcommercialsaleanduseofthecapturedCO2.There

ispotentialforcarboncapturingwheneverfossil-or

biomass-basedfuelsarecombustedorevenbefore

combustion,forinstanceforblueorturquoisehydrogen.Itcanalsobeappliedintheammonia,iron,steelor

cementindustries.

TheimplementationofCCUShastwomajoruse-cases

acrossallindustries.Themoststraightforwardapplicationhappensinthecontextofcarbonremoval.Here,

technologiesforDirectAirCarbonCaptureandStorage

(DACCS)andBioenergywithCarbonCaptureandStorage(BECCS)playamajorrole.Bothtechnologiesresultin

theremovalofemissions,so-called“negativeemissions”,whenthecapturedcarbonispermanentlystored.

Secondly,CCUScanbeappliedtocaptureemissions

inindustrialprocesses.Thefocusherewilllieonthose

sectorswhereemissionscannotcompletelyberemoved

fromtheindustrialprocessandalternativenon-CO2

emittingprocessesarenotavailable,suchascement,steelorchemicals.

Figure7ashowstheaverageCCSinvestmentand7b

thecumulativeCCsinvestment,comparingtwodifferentsources.WhileETCprovidesadecompositionbyCCS

technologybysector,aswellasadditionalinvestment

needsinrenewableenergytosupplypowertoDACC,theNGFSanalysisshowsdetailsontheregionalsplitofCCSinvestments.Around17%oftotalinvestmentsoccurin

theEU.Notably,investmentinNature-BasedSolutions

(NBS)arenotincludedbuthavebeenaddressedinour

previousCarbonFarmingReport(see

AllianzResearch

(2022).CarbonFarming:Atransitionpathforagriculture

&forestry

).DACCtechnologiesare,however,usually

deployedatorinclosevicinitytopermanentstoragesites.Investmentintransportation(andstorage)willthusbe

significantlylowerforDACC.

?

ETC(2022).CarbonCapture,UtilisationandStorageintheEnergyTransition:VitalbutLimited

11

AverageyearlyinvestmentbnUSD

inadditionalcapturingcapacity

CumulativeinvestedbnUSD

incapturingcapacity

105

05April2023

Figure7a:CCSaverageglobalinvestments,USDbnperyear

250

200

150

100

50

0

NGFSCCSEU

NGFSCCSROW

214

RenewablePowerforDACC

DACC

Iron&Steel

Power

FossilFuelProcessing

142

BlueHydrogen

Cement

BECC

114

105

102

Transport

89

Storage

75

44

31

14

2

ETCNGFS

2020-2025

ETCNGFS

2025-2030

ETCNGFS

2030-2035

ETCNGFS

2035-2040

ETCNGFS

2040-2045

ETCNGFS

2045-2050

Sources:ETCbasescenario,NGFSNetZero2050scenario,AllianzResearch.

Figure7b:CCScumulativeglobalinvestments,USDbn

3,500

3,000

2,500

2,000

1,500

1,000

500

0

3,083

Storage

Cement

BlueHydrogen

FossilFuelProcessing

Transport

BECC

Power

2,015

Iron&Steel

DACC

RenewablePowerforDACC

1,304

735

291

71

202520302035204020452050

Sources:ETC,AllianzResearch.

12

PhotobyAlexLvrsonUnsplash

AllianzResearch

Cementindustryand

othernon-metallicminerals

Afterwater,concreteisthesecondmost-consumed

substanceintheworld?,andaccountsfor7%ofglobalemissions.Withoutconcrete,ourinfrastructurewouldcrumblesoontheroadtoanet-zeroglobaleconomy,thereisnowayaroundmakingitclean.Whilethenon-metallicmineralssectorconsistsofavarietyofdifferentproductssuchasglass,ceramics,bricksandgypsum,

cementandlimeproductiondominateemissions.Thisincludes1)theprocessemissionsfromthechemical

reactionthatturnslimestoneintocement;2)theenergyemissionsfromtheenergyusedtocreatethehigh

temperaturesneededincementproductionand3)toalowerextent,emissionsfromcementtransport.

Decarbonizingthecementsectorisachallengingtaskmainlyduetoprocessemissions,whicharedifficult

toavoid.Partofthesolutionliesindevelopingnew

cementchemistries.Tomeettheambitionofachievingnet-zeroemissionsby2050inthecementsector,the

clinker-to-cementratio?needstobereducedand

innovativetechnologiesdeployed,suchascarbon

captureandstorageandclinkersmadefromalternative

rawmaterials.10Theglobalaverageclinker-cement

ratioisabout0.81,withthebalancecomprisinggypsumandadditivessuchasblastfurnaceslag,flyashand

naturalpozzolana.Asclinkerproductionisthemost

energy-intensiveandCO2-emittingstepofthecement-makingprocess,reductionsintheclinker-cement

ratio(throughtheuseofclinkersubstitutes)would

lowerenergyuseandprocessCO2emissions.Anotherpossiblewaytoreduceenergyandprocessemissionsincementproductionistoblendcementswithincreasedproportionsofalternative(non-clinker)feedstocks,suchasvolcanicash,granulatedblastfurnaceslagfromironproductionorflyashfromcoal-firedpowergeneration.GovernmentscanstimulateinvestmentandinnovationintheseareasbyfundingR&Danddemonstrations,

creatingdemandfornear-zero-emissioncement

andadoptingmandatoryCO2emission-reduction

policies.ReducingCO2emissionswhileproducing

enoughcementtomeetdemandwillbechallenging,especiallyasdemandgrowthisexpectedtoresumeasthepotentialslowdowninChineseactivityisoffsetbyexpansioninothermarkets.11

?Gagg2014.Cementandconcreteasanengineeringmaterial:Anhistoricappraisalandcasestudyanalysis.EngineeringFailureAnalysis.

/10.1016/j.engfailanal.2014.02.004

?Cementisabindingagentthatsetsandhardenstoadheretobuildingunitssuchasstones,bricksortiles.Clinkerisanodularmate-rialwhichisusedasthebinderincementproducts.Theprimaryuseofclinkeristomanufacturecement.

10

UNClimateTechnologyCentre&Network(2010).Clinkerreplacement

11IEA(2022).Trackingreport-Cement

13

Ontheotherhand,carbonemissionsfromheatused

incementproductioncouldbereducedthrougha

switchfromcoaltogas,andeventuallyfullyeliminatedthroughheatelectrification,andtheuseofbiomass

orhydrogen.However,eachoftheseoptionswillentailsignificantadditionalcosts.

Lastbutnotleast,reducingcarbonemissionsfrom

cementwillalsorequirebetterdemandmanagement.

Theuseoftimberasasubstituteforbuildingmaterial

isnotwithoutitschallenges.Therefore,globalcementproductionisexpectedtocontinuetogrowworldwide:whileitisprojectedtostagnateinEuropebetween2030and2050,itwillincreaseinIndia,otherdeveloping

AsiancountriesandAfrica.However,demandgrowthcouldbesloweddownviagreatermaterialefficiencyinbuildingdesign,wastereduction,maximizingthe

lifeofbuildingsandinfrastructureandsomematerialscircularity.

CementemissionsarebeingaddressedbytheEU

EmissionsTradingSystem(ETS)andseveralother

countries,includingCanada,SouthKoreaandChina,havealsointroducedpricingschemes.Additionally,

theEUisdevelopingacarbonborderadjustment

mechanismforindustries,includingcement,whichaimsatlimitingcarbonleakageandincentivizingstronger

emissionsmeasuresinforeigncountries.12Many

governmentsandorganizationshavealsoreleasedroadmapsfordecarbonizingthecementsectorandreachingnetzeroby205013.

05April2023

Forthis,itiscrucialtocommercializeCCSby2030.

Therefore,governmentsmustplanandconstruct

infrastructuretotransportandstorecapturedCO2asthelackofsuchinfrastructurecancausesignificantdelaysintechnologicaldeployment.Transporting

CO2throughpipelinesisthemostsuitableway,andgovernmentsmustgainpublicsupportforbuildingthesepipelinesandCO2storagefacilities.

AnextensiveanalysisoftherequiredabatementcostsassociatedwiththeimplementationofthenecessarymeasuresfromelectrificationtoCCScanbeconducted

usingtheIndustryPLAN14model(Johannsen&

Mathiesen2023).Employingabottom-upapproach,

themodeldefinesspecificmeasuresforthesectorwithadjustableimplementationrateparametersandyieldsresultsonenergysavingsandinvestmentsforthe

EU+UK.TheaggregateandaveragedinvestmentspertonofCO2abatedforthenon-metallicmineralssector(cement,ceramicsandglass)showsarelativelystablerelationshipatvariouslevelsofemissionintensityof

energyuse,witharoundEUR615/tCO2(Figure8a).In

theothersectorsanalyzed,averageinvestmentneedswillrisemorestronglysincemarginalcostincreasesforthelastmeasurestoreachzeroemissionsaretypicallyhigherthanforthe“l(fā)ow-hangingfruits”implementedfirst.AsseeninFigure8a,implementingthesuggestedmeasuresfromtheIndustryPLAN15modelisestimatedtoresultinadecreaseoftheemissionintensityfrom

41.7tCO2/MJin2030to6.6tCO2/MJby2050.AnalyzingtheMaterialEconomics(2019)resultsforthecement

sector(Figure8b)andaggregatingtheresultsyieldsanaverageglobalinvestmentofaroundEUR250/tCO2toreduceemissions.16

12IntheterminologyoftheEuropeanCommission,‘carbonleakage’doesnotonlyrefertoemissionsjustbeingemittedinanother

countryinsteadoftheEU,whichwouldn’thelptheglobalclimateambition.Rather‘carbonleakage’alsoreferstothevalueadded

lfodgueAppendixGCCARoadmap.Anotherroadmap

isthe

IEACementTechnologyRoadmap

whichbuildsonthelong-standingcollaborationoftheIEAwiththeCementSustainabilityInitiative(CSI)oftheWorldBusinessCouncilforSustainableDevelopment(WBCSD).

14IndustryPLANchoosesthedecarbonizationactionsinabottom-upapproachfromamerit-orderoftechnologyoptions.

15MoreonthebackgroundofthetechnologiesandmitigationpotentialscanbefoundinAppendix:Industryemissionreductionpotentials.

16Caution:ThestatedIndustryPLANnumbersrefertoreducingtheemissionintensityofenergyuse(tCO2/MJ)whiletheMaterial

Economicsmodelnumbersrefertoreducingemissions(%CO2totalemissionreduction).ThedotsintheMaterialeconomicsgraph

showtheactualcalculatedaverageabatementcostsinthemodelatdifferingemissionreductionlevels,whilethelineshowstheOLSestimatederivedfromthecalculatedvaluesshownasdots.

14

AverageCAPEX/Abatement(EUR/tCO2)

AverageCAPEX/Abatement(EUR/tCO2)

AllianzResearch

Figure8a:Averageinvestmentinthecement/non-metallicmineralsmetalssector(EUR/tCO2)neededtoreachemissionintensitytargetsonthepathtonetzero

618

617

616

615

614

613

612

611

610

609

608

41.7tCO2/MJ(2030)6.6tCO2/MJ(2050)

NetZeropathwaycompliantemissionintensityofenergyinrespectiveyear

Sources:IndustryPLAN,AllianzResearch.Notes:CoverageEU+UK.Non-metallicmineralsincludecement,ceramicsandglass.

Figure8b:Averagecementsectorinvestment(inEUR/tCO2)relativetoemissionreductiontarget

300

250

200

150

100

50

0

0%20%40%60%80%100%

EmissionReduction

Sources:MaterialEconomics,AllianzResearch.Notes:CoverageisEU.

15

PhotobySonikaAgarwalonUnsplash

05April2023

Chemicals

ThechemicalsectorplaysacrucialroleintheEuropeaneconomy,withchemicalsbeingintegraltomajor

Europeanvaluechainssuchaspharmaceuticals,

electronics,batteriesforelectricvehiclesand

constructionmaterials.TheEU-27isthesecond-largestchemicalsproducerglobally,generatingEUR499bn

insalesin2020andaccountingforaround7%of

manufacturingoutputbyturnover,whichmakesitthe

fourth-largestindustryintheEU.Thechemicalindustry

employshighlyskilledworkersandboasts67%greater

laborproductivitythanthemanufacturingsectoraverage.

WhilechemicalproductionintheEU-27hasjumpedby+47%,GHGemissionshavedecreasedby-54

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論