貴州省清鎮(zhèn)市2024屆九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第1頁
貴州省清鎮(zhèn)市2024屆九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第2頁
貴州省清鎮(zhèn)市2024屆九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第3頁
貴州省清鎮(zhèn)市2024屆九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第4頁
貴州省清鎮(zhèn)市2024屆九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

貴州省清鎮(zhèn)市2024屆九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,是的直徑,且,是上一點,將弧沿直線翻折,若翻折后的圓弧恰好經(jīng)過點,取,,,那么由線段、和弧所圍成的曲邊三角形的面積與下列四個數(shù)值最接近的是()A.3.2 B.3.6 C.3.8 D.4.22.下列各式與是同類二次根式的是()A. B. C. D.3.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.4.如圖,在中,,垂足為,,若,則的長為()A. B. C.5 D.5.下列二次根式中,是最簡二次根式的是()A. B. C. D.6.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°7.已知△ABC的外接圓⊙O,那么點O是△ABC的()A.三條中線交點 B.三條高的交點C.三條邊的垂直平分線的交點 D.三條角平分線交點8.若x=﹣1是關(guān)于x的一元二次方程ax2﹣bx﹣2019=0的一個解,則1+a+b的值是()A.2017 B.2018 C.2019 D.20209.圓錐的底面半徑為1,母線長為2,則這個圓錐的側(cè)面積是()A. B. C. D.10.如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A(3,0),頂點B在y軸正半軸上,頂點D在x軸負(fù)半軸上,若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為()A.15 B.20 C.25 D.3011.二次函數(shù)的圖象可以由二次函數(shù)的圖象平移而得到,下列平移正確的是()A.先向右平移2個單位,再向上平移1個單位B.先向右平移2個單位,再向下平移1個單位C.先向左平移2個單位,再向上平移1個單位D.先向左平移2個單位,再向下平移1個單位12.若關(guān)于x的方程kx2﹣2x﹣1=0有實數(shù)根,則實數(shù)k的取值范圍是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣1二、填空題(每題4分,共24分)13.如圖,OA、OB是⊙O的半徑,CA、CB是⊙O的弦,∠ACB=35°,OA=2,則圖中陰影部分的面積為_____.(結(jié)果保留π)14.已知一個扇形的半徑為5cm,面積是20cm2,則它的弧長為_____.15.當(dāng)寬為3cm的刻度尺的一邊與圓相切時,另一邊與圓的兩個交點處的讀數(shù)如圖所示(單位:cm),那么該圓的半徑為▲cm.16.若方程的兩根,則的值為__________.17.如圖,是的直徑,弦與弦長度相同,已知,則________.18.不透明布袋里有5個紅球,4個白球,往布袋里再放入x個紅球,y個白球,若從布袋里摸出白球的概率為,則y與x之間的關(guān)系式是_____.三、解答題(共78分)19.(8分)如圖,中,,以為直徑作半圓交與點,點為的中點,連結(jié).(1)求證:是半圓的切線;(2)若,,求的長.20.(8分)如圖,拋物線的頂點坐標(biāo)為,點的坐標(biāo)為,為直線下方拋物線上一點,連接,.(1)求拋物線的解析式.(2)的面積是否有最大值?如果有,請求出最大值和此時點的坐標(biāo);如果沒有,請說明理由.(3)為軸右側(cè)拋物線上一點,為對稱軸上一點,若是以點為直角頂點的等腰直角三角形,請直接寫出點的坐標(biāo).21.(8分)如圖①,在平行四邊形ABCD中,對角線AC、BD交于點O,AB=AC,AB⊥AC,過點A作AE⊥BD于點E.(1)若BC=6,求AE的長度;(2)如圖②,點F是BD上一點,連接AF,過點A作AG⊥AF,且AG=AF,連接GC交AE于點H,證明:GH=CH.22.(10分)某商場銷售一種商品的進(jìn)價為每件30元,銷售過程中發(fā)現(xiàn)月銷售量y(件)與銷售單價x(元)之間的關(guān)系如圖所示.(1)根據(jù)圖象直接寫出y與x之間的函數(shù)關(guān)系式.(2)設(shè)這種商品月利潤為W(元),求W與x之間的函數(shù)關(guān)系式.(3)這種商品的銷售單價定為多少元時,月利潤最大?最大月利潤是多少?23.(10分)如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.(1)證明:△APD≌△CPD;(2)求∠CPE的度數(shù);(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.24.(10分)某商場“六一”期間進(jìn)行一個有獎銷售的活動,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖),并規(guī)定:顧客購物100元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,當(dāng)轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品(若指針落在兩個區(qū)域的交界處,則重新轉(zhuǎn)動轉(zhuǎn)盤).下表是此次促銷活動中的一組統(tǒng)計數(shù)據(jù):轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n1002004005008001000落在“可樂”區(qū)域的次數(shù)m60122240298604落在“可樂”區(qū)域的頻率0.60.610.60.590.604(1)計算并完成上述表格;(2)請估計當(dāng)n很大時,頻率將會接近__________;假如你去轉(zhuǎn)動該轉(zhuǎn)盤一次,你獲得“可樂”的概率約是__________;(結(jié)果精確到0.1)(3)在該轉(zhuǎn)盤中,表示“車?!眳^(qū)域的扇形的圓心角約是多少度?25.(12分)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,探究函數(shù)y=x2+ax﹣4|x+b|+4(b<0)的圖象和性質(zhì):(1)下表給出了部分x,y的取值;xL﹣3﹣2﹣1012345LyL30﹣1030﹣103L由上表可知,a=,b=;(2)用你喜歡的方式在坐標(biāo)系中畫出函數(shù)y=x2+ax﹣4|x+b|+4的圖象;(3)結(jié)合你所畫的函數(shù)圖象,寫出該函數(shù)的一條性質(zhì);(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3個不同的實數(shù)解,請直接寫出m的取值范圍.26.如圖,為了估算河的寬度,在河對岸選定一個目標(biāo)作為點A再在河的這邊選點B和C,使AB⊥BC,然后,再選點E,使EC⊥BC,用視線確定BC和AE的交點D.此時如果測得BD=120米,DC=60米,EC=50米,求兩岸間的大致距離AB.

參考答案一、選擇題(每題4分,共48分)1、C【分析】作OE⊥AC交⊙O于F,交AC于E,連接CO,根據(jù)折疊的性質(zhì)得到OE=OF,根據(jù)直角三角形的性質(zhì)求出∠CAB,再得到∠COB,再分別求出S△ACO與S扇形BCO即可求解..【題目詳解】作OE⊥AC交⊙O于F,交AC于E,由折疊的性質(zhì)可知,EF=OE=OF,∴OE=OA,在Rt△AOE中,OE=OA,∴∠CAB=30°,連接CO,故∠BOC=60°∵∴r=2,OE=1,AC=2AE=2×=2∴線段、和弧所圍成的曲邊三角形的面積為S△ACO+S扇形BCO===≈3.8故選C.【題目點撥】本題考查的是翻折變換的性質(zhì)、圓周角定理,扇形的面積求解,解題的關(guān)鍵是熟知折疊是一種對稱變換,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.2、A【分析】根據(jù)同類二次根式的概念即可求出答案.【題目詳解】解:(A)原式=2,故A與是同類二次根式;(B)原式=2,故B與不是同類二次根式;(C)原式=3,故C與不是同類二次根式;(D)原式=5,故D與不是同類二次根式;故選:A.【題目點撥】此題主要考查了同類二次根式的定義,正確化簡二次根式是解題關(guān)鍵.3、C【分析】過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【題目詳解】過點O作OH⊥AB于點H,連接OA,OB,設(shè)⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【題目點撥】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、A【分析】根據(jù)題意先求出AE和BE的長度,再求出∠BAE的sin值,根據(jù)平行線的性質(zhì)得出∠ADE=∠BAE,即可得出答案.【題目詳解】∵,∴BE=∴∵ABCD是平行四邊形∴AD∥BC∴∠ADE=∠DEC又∵∠BAE=∠DEC∴∠BAE=∠ADE∴∴故答案選擇A.【題目點撥】本題考查的是平行四邊形的綜合,難度適中,涉及到了平行四邊形的性質(zhì)以及三角函數(shù)值相關(guān)知識,需要熟練掌握.5、B【分析】根據(jù)最簡二次根式概念即可解題.【題目詳解】解:A.=,錯誤,B.是最簡二次根式,正確,C.=3錯誤,D.=,錯誤,故選B.【題目點撥】本題考查了最簡二次根式的概念,屬于簡單題,熟悉概念是解題關(guān)鍵.6、B【解題分析】只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【題目詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【題目點撥】本題考查圓周角定理,等邊三角形的判定等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的首先解決問題,屬于中考??碱}型.7、C【分析】根據(jù)三角形外接圓圓心的確定方法,結(jié)合垂直平分線的性質(zhì),即可求得.【題目詳解】已知⊙O是△ABC的外接圓,那么點O一定是△ABC的三邊的垂直平分線的交點,故選:C.【題目點撥】本題考查三角形外接圓圓心的確定,屬基礎(chǔ)題.8、D【分析】根據(jù)x=-1是關(guān)于x的一元二次方程ax2﹣bx﹣2019=0的一個解,可以得到a+b的值,從而可以求得所求式子的值.【題目詳解】解:∵x=﹣1是關(guān)于x的一元二次方程ax2﹣bx﹣2019=0的一個解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故選:D.【題目點撥】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確題意,求出所求式子的值.9、B【分析】根據(jù)題意得出圓錐的底面半徑為1,母線長為2,直接利用圓錐側(cè)面積公式求出即可.【題目詳解】依題意知母線長為:2,底面半徑r=1,則由圓錐的側(cè)面積公式得S=πrl=π×1×2=2π.故選:B.【題目點撥】此題主要考查了圓錐側(cè)面面積的計算,對圓錐的側(cè)面面積公式運用不熟練,易造成錯誤.10、B【分析】根據(jù)拋物線的解析式結(jié)合拋物線過點B、C,即可得出點C的橫坐標(biāo),由菱形的性質(zhì)可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【題目詳解】解:拋物線的對稱軸為,∵拋物線y=-x2-1x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,

∴點C的橫坐標(biāo)為-1.

∵四邊形ABCD為菱形,

∴AB=BC=AD=1,

∴點D的坐標(biāo)為(-2,0),OA=2.

在Rt△ABC中,AB=1,OA=2,∴OB=,∴S菱形ABCD=AD?OB=1×4=3.

故選:B.【題目點撥】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)、菱形的性質(zhì)以及平行四邊形的面積,根據(jù)二次函數(shù)的性質(zhì)、菱形的性質(zhì)結(jié)合勾股定理求出AD=1、OB=4是解題的關(guān)鍵.11、C【解題分析】二次函數(shù)平移都是通過頂點式體現(xiàn),將轉(zhuǎn)化為頂點式,與原式對比,利用口訣左加右減,上加下減,即可得到答案【題目詳解】解:∵,∴的圖形是由的圖形,向左平移2個單位,然后向上平移1個單位【題目點撥】本題主要考查二次函數(shù)圖形的平移問題,學(xué)生熟練掌握左加右減,上加下減即可解決這類題目12、C【分析】根據(jù)根的判別式()即可求出答案.【題目詳解】由題意可知:∴∵∴且,故選:C.【題目點撥】本題考查了根的判別式的應(yīng)用,因為存在實數(shù)根,所以根的判別式成立,以此求出實數(shù)k的取值范圍.二、填空題(每題4分,共24分)13、【分析】利用扇形的面積公式計算即可.【題目詳解】∵∠AOB=2∠ACB=70°,∴S扇形OAB==,故答案為.【題目點撥】本題主要考查扇形的面積公式,求出扇形的圓心角是解題的關(guān)鍵.14、1【分析】利用扇形的面積公式S扇形弧長×半徑,代入可求得弧長.【題目詳解】設(shè)弧長為L,則20L×5,解得:L=1.故答案為:1.【題目點撥】本題考查了扇形的面積公式,掌握扇形的面積等于弧長和半徑乘積的一半是解答本題的關(guān)鍵.15、.【解題分析】如圖,連接OA,過點O作OD⊥AB于點D,∵OD⊥AB,∴AD=AB=(9﹣1)=1.設(shè)OA=r,則OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=12,解得r=(cm).16、1【分析】根據(jù)根與系數(shù)的關(guān)系求出,代入即可求解.【題目詳解】∵是方程的兩根∴=-=4,==1∴===4+1=1,故答案為:1.【題目點撥】此題主要考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟知=-,=的運用.17、【分析】連接BD交OC與E,得出,從而得出;再根據(jù)弦與弦長度相同得出,即可得出的度數(shù).【題目詳解】連接BD交OC與E是的直徑弦與弦長度相同故答案為.【題目點撥】本題考查了圓周角定理,輔助線得出是解題的關(guān)鍵.18、x﹣2y=1.【分析】根據(jù)從布袋里摸出白球的概率為,列出=,整理即可得.【題目詳解】根據(jù)題意得=,整理,得:x﹣2y=1,故答案為:x﹣2y=1.【題目點撥】本題考查概率公式的應(yīng)用,熟練掌握概率公式建立方程是解題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)1.【分析】(1)連接OD,OE,BD,證△OBE≌△ODE(SSS),得∠ODE=∠ABC=90°;(2)證△DEC為等邊三角形,得DC=DE=2.【題目詳解】(1)證明:連接OD,OE,BD,

∵AB為圓O的直徑,

∴∠ADB=∠BDC=90°,

在Rt△BDC中,E為斜邊BC的中點,

∴DE=BE,

在△OBE和△ODE中,

,

∴△OBE≌△ODE(SSS),

∴∠ODE=∠ABC=90°,

則DE為圓O的切線;

(2)在Rt△ABC中,∠BAC=30°,

∴BC=AC,

∵BC=2DE=4,

∴AC=8,

又∵∠C=10°,DE=CE,

∴△DEC為等邊三角形,即DC=DE=2,

則AD=AC-DC=1.【題目點撥】考核知識點:切線的判定和性質(zhì).20、(1);(2)最大值為,點的坐標(biāo)為;(3)點的坐標(biāo)為,.【分析】(1)先設(shè)頂點式,再代入頂點坐標(biāo)得出,最后代入計算出二次項系數(shù)即得;(2)點的坐標(biāo)為,先求出B、C兩點,再用含m的式子表示出的面積,進(jìn)而得出面積與m的二次函數(shù)關(guān)系,最后根據(jù)二次函數(shù)性質(zhì)即得最值;(3)分成Q點在對稱軸的左側(cè)和右側(cè)兩種情況,再分別根據(jù)和列出方程求解即得.【題目詳解】(1)設(shè)拋物線的解析式為.∵頂點坐標(biāo)為∴.∵將點代入,解得∴拋物線的解析式為.(2)如圖1,過點作軸,垂足為,交于點.∵將代入,解得,∴點的坐標(biāo)為.∵將代入,解得∴點C的坐標(biāo)為設(shè)直線的解析式為∵點的坐標(biāo)為,點的坐標(biāo)為∴,解得∴直線的解析式為.設(shè)點的坐標(biāo)為,則點的坐標(biāo)為∴過點作于點∵∴故當(dāng)時,的面積有最大值,最大值為此時點的坐標(biāo)為(3)點的坐標(biāo)為,.分兩種情況進(jìn)行分析:①如圖2,過點作軸的平行線,分別交軸、對稱軸于點,設(shè)點的坐標(biāo)為∵∴∴在和中∴∴∵,∴解得(舍去),∴點的坐標(biāo)為.②如圖3,過點,作軸的平行線,過點作軸的平行線,分別交,于點,.設(shè)點的坐標(biāo)∵由①知∴∵,∴解得,(舍去)∴點的坐標(biāo)為綜上所述:點的坐標(biāo)為或.【題目點撥】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求解析式、二次函數(shù)最值的應(yīng)用、解一元二次方程、全等三角形的判定及性質(zhì),解題關(guān)鍵是熟知二次函數(shù)在實數(shù)范圍的最值在頂點取到,一線三垂直的全等模型,二次函數(shù)頂點式:.21、(1)AE=;(2)證明見解析.【分析】(1)根據(jù)題意可得:AB=AC=6,可得AO=3,根據(jù)勾股定理可求BO的值,根據(jù)S△ABO=AB×BO=BO×AE,可求AE的長度.(2)延長AE到P,使AP=BF,可證△ABF≌△APC,可得AF=PC.則GA=PC,由AG⊥AF,AE⊥BE可得∠GAH=∠BFA=∠APC,可證△AGH≌△PHC,結(jié)論可得.【題目詳解】解:(1)∵AB=AC,AB⊥AC,BC=6∴AB2+AC2=BC2,∴2AC2=72∴AC=AB=6∵四邊形ABCD是平行四邊形∴AO=CO=3在Rt△AOB中,BO==3∵S△ABO=AB×BO=BO×AE∴3×6=3×AE∴AE=(2)如圖:延長AE到P,使AP=BF∵∠BAC=90°,AE⊥BE∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°∴∠ABE=∠CAE且AB=AC,BF=AP∴△ABF≌△APC∴AF=PC,∠AFB=∠APC∵AG⊥AF,AG=AF∴AG=PC∵∠GAH=∠GAF+∠FAE=90°+∠FAE,∠AFB=∠AEB+∠FAE=90°+∠FAE∴∠GAH=∠AFB∴∠AFB=∠GAH=∠APC,且AG=PC,∠GHA=∠CHP∴△AGH≌△CHP∴GH=HC【題目點撥】本題考查了平行四邊形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當(dāng)輔助線構(gòu)造全等三角形是解決問題的關(guān)鍵.22、(1)y=;(2)W=;(3)這種商品的銷售單價定為65元時,月利潤最大,最大月利潤是1.【分析】(1)當(dāng)40≤x≤60時,設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,當(dāng)60<x≤90時,設(shè)y與x之間的函數(shù)關(guān)系式為y=mx+n,解方程組即可得到結(jié)論;(2)當(dāng)40≤x≤60時,當(dāng)60<x≤90時,根據(jù)題意即可得到函數(shù)解析式;(3)當(dāng)40≤x≤60時,W=-x2+210x-5400,得到當(dāng)x=60時,W最大=-602+210×60-5400=3600,當(dāng)60<x≤90時,W=-3x2+390x-9000,得到當(dāng)x=65時,W最大=-3×652+390×65-9000=1,于是得到結(jié)論.【題目詳解】解:(1)當(dāng)40≤x≤60時,設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,將(40,140),(60,120)代入得,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣x+180;當(dāng)60<x≤90時,設(shè)y與x之間的函數(shù)關(guān)系式為y=mx+n,將(90,30),(60,120)代入得,解得:,∴y=﹣3x+300;綜上所述,y=;(2)當(dāng)40≤x≤60時,W=(x﹣30)y=(x﹣30)(﹣x+180)=﹣x2+210x﹣5400,當(dāng)60<x≤90時,W=(x﹣30)(﹣3x+300)=﹣3x2+390x﹣9000,綜上所述,W=;(3)當(dāng)40≤x≤60時,W=﹣x2+210x﹣5400,∵﹣1<0,對稱軸x==105,∴當(dāng)40≤x≤60時,W隨x的增大而增大,∴當(dāng)x=60時,W最大=﹣602+210×60﹣5400=3600,當(dāng)60<x≤90時,W=﹣3x2+390x﹣9000,∵﹣3<0,對稱軸x==65,∵60<x≤90,∴當(dāng)x=65時,W最大=﹣3×652+390×65﹣9000=1,∵1>3600,∴當(dāng)x=65時,W最大=1,答:這種商品的銷售單價定為65元時,月利潤最大,最大月利潤是1.【題目點撥】本題考查了把實際問題轉(zhuǎn)化為二次函數(shù),再利用二次函數(shù)的性質(zhì)進(jìn)行實際應(yīng)用.根據(jù)題意分情況建立二次函數(shù)的模型是解題的關(guān)鍵.23、(1)證明見解析;(2)90°;(3)AP=CE.【分析】(1)利用正方形得到AD=CD,∠ADP=∠CDP=45,即可證明全等;(2)設(shè),利用三角形內(nèi)角和性質(zhì)及外角性質(zhì)得到,,再利用周角計算得出x值;(3)AP=CE.設(shè),利用三角形內(nèi)角和性質(zhì)及外角性質(zhì)得到,,求出,得到是等邊三角形,即可證得AP=CE.【題目詳解】解:(1)四邊形ABCD是正方形,∴AD=CD,∠ADP=∠CDP=45,在與中,,∴;(2)設(shè),由(1)得,,因為PA=PE,所以所以;(3)AP=CE.設(shè),由(1)得,,∵PA=PE且在菱形ABCD中,∴,∴,由(1)得PA=PC,∴PC=PE,∴是等邊三角形,∴PE=PC=CE,∴AP=CE.【題目點撥】此題考查全等三角形的判定,正方形的性質(zhì),菱形的性質(zhì),三角形的內(nèi)角和及外角性質(zhì),(2)與(3)圖形有變化,解題思路不變,做題中注意總結(jié)解題的方法.24、(1)472,0.596;(2)0.6,0.6;(3)144°.【解題分析】試題分析:在同樣條件下,做大量的重復(fù)試驗,利用一個隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù),可以估計這個事件發(fā)生的概率,(1)當(dāng)試驗的可能結(jié)果不是有限個,或各

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論