版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
福建省龍巖市塘前中學2022-2023學年高三數(shù)學文摸底試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.執(zhí)行如圖所示的程序框圖,則輸出的i的值為()A.5 B.6 C.7 D.8參考答案:B【考點】程序框圖.【分析】模擬執(zhí)行程序的運行過程,即可得出程序運行后輸出的i值.【解答】解:模擬執(zhí)行程序的運行過程,如下;S=1,i=1,S<30;S=2,i=2,S<30;S=4,i=3,S<30;S=8,i=4,S<30;S=16,i=5,S<30;S=32,i=6,S≥30;終止循環(huán),輸出i=6.故選:B【點評】本題主要考查了程序框圖的應用問題,模擬程序的運行過程是解題的常用方法.2.設點在不等式組表示的平面區(qū)域上,則的最小值為A.1
B.
C.2
D.參考答案:D3.已知實數(shù)滿足,則下列關(guān)系式恒成立的是 (A) (B) (C) (D)參考答案:A由得,,但是不可以確定與的大小關(guān)系,故C、D排除,而本身是一個周期函數(shù),故B也不對,正確。4.設的最大值為(
) A.
80 B. C.
25 D.參考答案:A5.已知曲線C1:,曲線C2:,則下面結(jié)論正確的是(
)A.將曲線C1向右平移個單位,可得C2B.將曲線C1向左平移個單位,可得C2C.將曲線C1向右平移個單位,可得C2D.將曲線C1向左平移個單位,可得C2參考答案:B將曲線向左平移個單位,可得
6.三棱錐S﹣ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則棱SB的長為()A.2 B.4 C. D.16參考答案:B【考點】簡單空間圖形的三視圖.【專題】空間位置關(guān)系與距離.【分析】由已知中的三視圖可得SC⊥平面ABC,底面△ABC為等腰三角形,SC=4,△ABC中AC=4,AC邊上的高為2,進而根據(jù)勾股定理得到答案.【解答】解:由已知中的三視圖可得SC⊥平面ABC,且底面△ABC為等腰三角形,在△ABC中AC=4,AC邊上的高為2,故BC=4,在Rt△SBC中,由SC=4,可得SB=4,故選B【點評】本題考查的知識點是簡單空間圖象的三視圖,其中根據(jù)已知中的視圖分析出幾何體的形狀及棱長是解答的關(guān)鍵.7.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有點(
)
A.向左平移個單位長度
B.向右平移個單位長度C.向右平移個單位長度
D.向左平移個單位長度參考答案:A由于,故,所以,,由,求得,故,故需將圖像上所有點向左平移個單位長度得到,故選A.
8.已知實數(shù)x,y滿足不等式,則的最小值為(
)A.-4 B.5 C.4 D.無最小值參考答案:C繪制不等式組表示的平面區(qū)域如圖所示,目標函數(shù)即,其中取得最小值時,其幾何意義表示直線系在軸上的截距最小,據(jù)此結(jié)合目標函數(shù)的幾何意義可知目標函數(shù)在點處取得最小值,聯(lián)立直線方程,可得點的坐標為,據(jù)此可知目標函數(shù)的最小值為.故選C.9.雙曲線一條漸近線的傾斜角為,離心率為,當取最小值時,雙曲線的實軸長為A.
B.
C.
D.4參考答案:B10.已知集合,其中,且.則中所有元素之和是(
)(A)(B)(C)(D)參考答案:C本題可轉(zhuǎn)化為二進制,集合中的二進制數(shù)為,因為,所以最大的二進制數(shù)為1111,最小的二進制數(shù)1000,對應的十進制數(shù)最大為15,最小值為8,則,8到15之間的所有整數(shù)都有集合中的數(shù),所以所有元素之和為,選C.二、填空題:本大題共7小題,每小題4分,共28分11.已知,且是常數(shù),又的最小值是,則________.參考答案:712.記集合和集合表示的平面區(qū)域分別為,若在區(qū)域內(nèi)任取一點,則點落在區(qū)域的概率為
.參考答案:【知識點】幾何概型K3為圓心在原點,半徑為4的圓面.是一個直角邊為4的等腰三角形,頂點是坐標原點.若在區(qū)域內(nèi)任取一點,則由幾何概型可知點M落在區(qū)域的概率為.【思路點撥】為圓心在原點,半徑為4的圓面.是一個直角邊為4的等腰三角形,求出面積,再求概率。13.我們可以從“數(shù)”和“形”兩個角度來檢驗函數(shù)的單調(diào)性.從“形”的角度:在區(qū)間I上,若函數(shù)y=f(x)的圖象從左到右看總是上升的,則稱y=f(x)在區(qū)間I上是增函數(shù).那么從“數(shù)”的角度:,則稱y=f(x)在區(qū)間I上是增函數(shù).參考答案:對任意的x1、x2∈I,若x1<x2,都有f(x1)<f(x2)略14.某調(diào)查機構(gòu)就某單位一千多名職工的月收入進行調(diào)查,現(xiàn)從中隨機抽出100名,已知抽到的職工的月收入都在元之間,根據(jù)調(diào)查結(jié)果得出職工的月收入情況殘缺的頻率分布直方圖如下圖(圖左)所示,則該單位職工的月收入的平均數(shù)大約是
元.參考答案:2900略15.已知函數(shù)在內(nèi)是減函數(shù),則實數(shù)的范圍是
▲
.參考答案:?≤ω<0
略16.在數(shù)列中,已知,記為數(shù)列的前項和,則
.參考答案:-1006【知識點】數(shù)列求和.D4
解析:由,得,,,…由上可知,數(shù)列是以4為周期的周期數(shù)列,且,所以【思路點撥】由已知結(jié)合數(shù)列遞推式求出數(shù)列前5項,得到數(shù)列是以5為周期的周期數(shù)列,由此求出答案.17.若是夾角為的兩個單位向量,,則的夾角為
.參考答案:.
因為是夾角為的兩個單位向量,,所以||=|2+|=,||=|-3+2|=,·=則cos<,>==,所以<,>=.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.設函數(shù)().(1)討論函數(shù)f(x)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.參考答案:(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【分析】(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調(diào)遞增,且,函數(shù)只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數(shù)只有一個零點,原方程只有一個解,當且遞增區(qū)間時,遞減區(qū)間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數(shù)的綜合應用,涉及到單調(diào)性、零點、極值最值,考查分類討論和等價轉(zhuǎn)化思想,屬于中檔題.19.已知定義在區(qū)間上的函數(shù)為奇函數(shù)且(1)求實數(shù)m,n的值;(2)求證:函數(shù)上是增函數(shù)。(3)若恒成立,求t的最小值。參考答案:(1)對應的函數(shù)為,對應的函數(shù)為
(2)
理由如下:令,則為函數(shù)的零點。,方程的兩個零點因此整數(shù)
(3)從圖像上可以看出,當時,
當時,
20.(12分)如圖,直三棱柱ABC﹣AC1中,AC=BC=1,∠ACB=90°,點D為AB的中點.(1)求證:BC1∥面A1DC;(2)若AA1=,求二面角A1﹣CD﹣B的平面角的大?。畢⒖即鸢福嚎键c: 與二面角有關(guān)的立體幾何綜合題;直線與平面平行的判定.專題: 空間位置關(guān)系與距離;空間角.分析: (1)連接AC1,與AC1交于點E,連接ED,由已知得DE∥BC1,由此能證明BC1∥面A1DC.(2)由已知得∠A1DA為二面角A1﹣CD﹣A的平面角,由此能求出二面角A1﹣CD﹣B的平面角的大?。獯穑?(1)證明:連接AC1,與AC1交于點E,連接ED,則E為AC1的中點,又點D是AB中點,則DE∥BC1,而DE?平面A1DC,BC1不包含于面A1DC,∴BC1∥面A1DC.(2)解:∵二面角A1﹣CD﹣B的平面角與二面角A1﹣CD﹣A的平面角互補,又∵CD⊥AB,CD⊥AA1,∴CD⊥面ADA1,∴CD⊥A1D,∴∠A1DA為二面角A1﹣CD﹣A的平面角,在Rt△A1AD中,∵AA1==AD,∴∠A1DA=45°,∴二面角A1﹣CD﹣A的平面角的大小為45°,∴二面角A1﹣CD﹣B的平面角的大小為135°.點評: 本題考查直線與平面平行的證明,考查二面角的平面角的大小的求法,解題時要注意空間思維能力的培養(yǎng).21.點為兩直線和的交點.(Ⅰ)求點坐標.(Ⅱ)求過點且與直線平行的直線方程.(Ⅲ)求過原點且與直線和圍成的三角形為直角三角形的直線方程.參考答案:見解析(Ⅰ)解方程組,可得,∴點坐標為.(Ⅱ)∵直線的斜率為,∴過點的直線為,即.(或直接設直線為,代入點坐標即可)(Ⅲ)∵的斜率,的斜率為,顯然,不是垂直的關(guān)系,∴符合條件的直線可以與,任一直線垂直,∴斜率為或,∴直線方程為或.22.(12分)(1)求直線,對稱的直線方程(2)已知實數(shù)滿足,求的取值范圍。參考答案:(1)解兩直線交點P(3,-2)--------------------
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年互聯(lián)網(wǎng)金融服務合同風險控制3篇
- 二零二五年度定制豪華鐵門表面處理合同范本
- 二零二五年度LNG運輸合同-公路運輸及安全應急預案編制協(xié)議3篇
- 二零二五年度儲罐租賃及遠程監(jiān)控服務合同4篇
- 2025年酒吧人員緊急疏散預案合同范本3篇
- 二零二五年度房地產(chǎn)項目風險控制合同
- 二零二五年度農(nóng)業(yè)合作社農(nóng)業(yè)節(jié)水灌溉股權(quán)投資合同3篇
- 2025年度高速公路路面鋪磚工程勞務承攬合同4篇
- 二零二五版模具制造企業(yè)委托維修改型合同4篇
- 二零二五年度大學教授學術(shù)團隊建設合同3篇
- 山東鐵投集團招聘筆試沖刺題2025
- 真需求-打開商業(yè)世界的萬能鑰匙
- 2025年天津市政集團公司招聘筆試參考題庫含答案解析
- GB/T 44953-2024雷電災害調(diào)查技術(shù)規(guī)范
- 2024-2025學年度第一學期三年級語文寒假作業(yè)第三天
- 2024年列車員技能競賽理論考試題庫500題(含答案)
- 心律失常介入治療
- 6S精益實戰(zhàn)手冊
- 展會場館保潔管理服務方案
- 監(jiān)理從業(yè)水平培訓課件
- 廣東省惠州市實驗中學2025屆物理高二第一學期期末綜合測試試題含解析
評論
0/150
提交評論