版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter12 Terms:vertex,edge,adjacent,incident,degree,cycle,path,connectedcomponent,spanningtree;Threetypesofgraphs:undirected,directed,Commongraphrepresentations:adjacencymatrix,adjacencylists.G=VisthevertexVerticesarealsocallednodesandEistheedgeEachedgeconnectstwodifferentEdgesarealsocalledarcsandDirectededgehasanorientation Undirectededgehasnoorientation Undirectedgraph=>noorientedDirectedgraph=>everyedgehasanUndirectedDirectedThereisadirectedpathfromanyvertextoanyothervertex.2231845967Vertex=city,edge=communicationDrivingDistance/Time442381862445543956677Vertex=city,edgeweight=drivingStreet2231845967SomestreetsareoneCompleteUndirectedHasallpossiblen= n= n= n=NumberOfEdges—UndirectedEachedgeisoftheform(u,v),u!=Numberofsuchpairsinannvertexgraphisn(n-1).Sinceedge(u,v)isthesameasedge(v,u),thenumberofedgesinacompleteundirectedgraphisn(n-1)/2.Numberofedgesinanundirectedgraph<=n(n-NumberOfEdges--DirectedEachedgeisoftheform(u,v),u!=NumberofsuchpairsinannvertexgraphSinceedge(u,v)isnotthesameasedge(v,u),thenumberofedgesinacompletedirectedgraphisn(n-1).NumberofedgesinadirectedgraphisVertex2231845967Numberofedgesincidenttovertex.degree(2)=2,degree(5)=3,degree(3)=1SumOfVertex889Sumofdegrees=2e(eisnumberofIn-DegreeOfA2231845967in-degreeisnumberofincomingedgesindegree(2)=1,indegree(8)=0Out-DegreeOfA2231845967out-degreeisnumberofoutboundedgesoutdegree(2)=1,outdegree(8)=2SumOfIn-AndOut-eachedgecontributes1tothein-degreeofsomevertexand1totheout-degreeofsomeothervertexsumofin-degrees=sumofout-=e,whereeisthenumberofedgesinthedigraphComputerAdjacencyTables(orAdjacencyLinkedAdjacencyArrayAdjacencyTheSetAdjacency0/1n×nmatrix,wheren=#ofA(i,j)=1iff(i,j)isan23231 512345 1010 0001 0001 0001 1110AdjacencyMatrix231 5 231 5 DiagonalentriesareAdjacencymatrixofanundirectedgraphisA(i,j)=A(j,i)foralliand AdjacencyMatrix23145 23145 DiagonalentriesareAdjacencymatrixofadigraphneednotbeAdjacencyn2bitsofForanundirectedgraph,maystoreonlyloweroruppertriangle(excludediagonal).(n-1)n/2O(n)timetofindvertexdegreeand/orverticesadjacenttoagivenvertex.Adjacency AdjacencyAdjacencylistforvertexiisalinearlistofverticesadjacentfromvertexi.AnarrayofnadjacencyaList[1]=231 231 5aList[3]=aList[4]=aList[5]=ArrayAdjacencyEachadjacencylistisanarray231231 524243ArrayLength=#oflistelements=2e(undirectedgraph)#oflistelements=e(digraph)LinkedAdjacencyEachadjacencylistisa231231 5ArrayLength=#ofchainnodes=2e(undirected#ofchainnodes=eGraphAvertexuisreachablefromvertexviffthereisapathfromvtou.2231845967 Asearchmethodstartsatagivenvertexvandvisits/labels/markseveryvertexthatisreachablefromv.22314577ManygraphproblemssolvedusingasearchPathfromonevertextoIsthegraphFindaspanningCommonlyusedsearchDepth-firstVisitstartvertexandputintoaFIFORepeatedlyremoveavertexfromthequeue,visititsunvisitedadjacentvertices,putnewlyvisitedverticesintothequeue.2231845967Startsearchatvertex231231845967FIFOQueueVisit/mark/labelstartvertexandputinaFIFO231231845967FIFOQueue231231845967FIFOQueue24231231845967FIFOQueue24231231845967FIFOQueue4536231231845967FIFOQueue4536231231845967FIFO53231231845967FIFO53231231845967FIFOQueue3697231231845967FIFOQueue3697231231845967FIFO69231231845967FIFO69231231845967FIFO9231231845967FIFO9231231845967FIFO7231231845967FIFO7231231845967FIFOQueue231231845967FIFOQueue231231845967FIFOQueueisempty.SearchBreadth-FirstSearchAllverticesreachablefromthestartvertex(includingthestartvertex)arevisited.TimeEachvisitedvertexisputon(andsoremovedfrom)thequeueexactlyonce.Whenavertexisremovedfromthequeue,weexamineitsadjacentvertices.O(n)ifadjacencymatrixO(vertexdegree)ifadjacencylistsTotalΘ(sn),wheresisnumberofverticesinthecomponentthatissearched(adjacencymatrix)
)(adjacencyDepth-First{Labelvertexvasreached.for(eachunreachedvertexuadjacenctfromv)}2231845967Startsearchatvertex2231845967223184596722318459672231845967Labelvertex8andreturntovertexFromvertex9doa2231845967Labelvertex6anddoadepthfirstsearchfromeither4or7.Supposethatvertex4is 2231845967Labelvertex4andreturntoFromvertex6doa 2231845967Labelvertex7andreturnto22318459672231845967Doa2231845967Label3andreturntoReturntoDepth-FirstSearch23814 67Returnto231845231845967ReturntoinvokingDepth-FirstSearchSamecomplexityasSamepropertieswithrespecttopathfinding,connectedcomponents,andspanningtrees.Edgesusedtoreachunlabeledverticesdefineadepth-firstspanningtreewhenthegraphisThereareproblemsforwhichBFSisbetterthanDFSandviceversa.12.412.4Topological12.4.3Breadth-First}}12.4.3Breadth-First該方法的每一步均是輸出當前無后繼(即出度為0)的頂點。對于一個while(G中有出度為0的頂點)do{}12.512.5AGreedyAlgorithm:ShortestDirectedweightedPathlengthissumofweightsofedgesonThevertexatwhichthepathbeginsisthesourcevertex.Thevertexatwhichthepathendsisthedestinationvertex.11365247Apathfrom1to11365247Anotherpathfrom1toShortestPathSinglesourcesingleSinglesourceallAllpairs(everyvertexisasourceanddestination).SingleSourceSinglePossiblegreedyLeavesourcevertexusingcheapest/shortestLeavenewvertexusingcheapestedgesubjecttotheconstraintthatanewvertexisreached.ContinueuntildestinationisGreedyShortest1To711365247PathlengthisNotshortestpath.Algorithmdoesn’tSingleSourceAllNeedtogenerateupton(nisnumberofvertices)paths(includingpathfromsourcetoitself).GreedyConstructtheseuptonpathsinorderofincreasingAssumeedgecosts(lengths)are>=So,nopathhaslength<Firstshortestpathisfromthesourcevertextoitself.Thelengthofthispathis0. 4 1 113 1321351351 10131313135121213135413136
Eachpath(otherthanfirst)isaoneedgeextensionofapreviousNextshortestpathistheshortestoneedgeextensionofanalreadygeneratedshortest131367GreedySingleSourceAllLetd(i)(distanceFromSource(i))bethelengthofashortestoneedgeextensionofanalreadygeneratedshortestpath,theoneedgeextensionendsatvertexi.Thenextshortestpathistoanasyetunreachedvertexforwhichthed()valueisleast.Letp(i)(predecessor(i))bethevertexjustbeforevertexiontheshortestoneedgeextensiontoi.d062--p-111--11 11136524713d062p-111311 11136524713 13135 6 135 1 11136524713 13135 9 13512 1211365113652471313512 6295p-11533411354 4 6295 1153361 101313131351212135135406295-11533613136131367DataStructuresForDijkstra’sThegreedysinglesourcealldestinationsalgorithmisknownasDijkstra’salgorithm.Implementd()andp()as1DKeepalinearlistLofreachableverticestowhichshortestpathisyettobegenerated.SelectandremovevertexvinLthathassmallestd()value.Updated()andp()valuesofverticesadjacentto O(n)toselectnextdestinationO(out-degree)toupdated()andp()valueswhenadjacencylistsareused.O(n)toupdated()andp()valueswhenadjacencymatrixisused.Selectionandupdatedoneonceforeachvertextowhichashortestpathisfound.TotaltimeisO(n2+e)=12.612.6Minimum-CostSpanningweightedconnectedundirectedspanningcostofspanningtreeissumofedgefindspanningtreethathasminimum 9Networkhas10Spanningtreehasonlyn-1=7Needtoeitherselect7edgesordiscardStartwithann-vertex0-edgeforest.Consideredgesinascendingorderofcost.Selectedgeifitdoesnotformacycletogetherwithalreadyselectededges.Kruskal’sStartwitha1-vertextreeandgrowitintoann-vertextreebyrepeatedlyaddingavertexandanedge.Whenthereisachoice,addaleastcostedge.Prim’sStartwithann-vertexforest.Eachcomponent/treeselectsaleastcostedgetoconnecttoanothercomponent/tree.Eliminateduplicateselectionsandpossiblecycles.Repeatuntilonly1component/treeisleft.Sollin’s 9
StartwithaforestthathasnoConsideredgesinascendingorderof Edge(1,2)isconsideredfirstandaddedtotheforest.1223744566738 1223744566738 9Edge(7,8)isconsiderednextandEdge(3,4)isconsiderednextandEdge(5,6)isconsiderednextandEdge(2,3)isconsiderednextandEdge(1,3)isconsiderednextandrejecteditcreatesa 9
Edge(2,4)isconsiderednextandrejectedbecauseitcreatesacycle.Edge(3,5)isconsiderednextandEdge(3,6)isconsiderednextandEdge(5,7)isconsiderednextand183575722794466836683n-1edgeshavebeenselectedandnocycleSowemusthaveaspanningCostisMin-costspanningtreeisuniquewhenedgecostsare Prim’s 9StartwithanysinglevertexGeta2-vertextreebyaddingache
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度排水設(shè)施保險合同4篇
- 二零二五版飯店蔬菜肉類產(chǎn)地直供合作合同2篇
- 二零二五年度全新科技項目居間合作費合同模板下載2篇
- 二零二五年度內(nèi)蒙古肉牛產(chǎn)業(yè)鏈人才培養(yǎng)與引進合同
- 2025年度汽車銷售促銷活動執(zhí)行合同模板
- 二零二五年度學校室內(nèi)外體育設(shè)施一體化采購合同范本3篇
- 2025年度民間借貸合同監(jiān)督與委托管理服務(wù)合同4篇
- 2025年度面粉加工企業(yè)二零二五年度綠色有機面粉采購合同4篇
- 2025年度新能源汽車抵押擔保服務(wù)合同
- 二零二五年度公共綠地養(yǎng)護管理合同范本3篇
- 廣東省茂名市電白區(qū)2024-2025學年七年級上學期期末質(zhì)量監(jiān)測生物學試卷(含答案)
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運輸安全保障協(xié)議版B版
- 2025年度軍人軍事秘密保護保密協(xié)議與信息安全風險評估合同3篇
- 《食品與食品》課件
- 讀書分享會《白夜行》
- 光伏工程施工組織設(shè)計
- DB4101-T 121-2024 類家庭社會工作服務(wù)規(guī)范
- 化學纖維的鑒別與測試方法考核試卷
- 2024-2025學年全國中學生天文知識競賽考試題庫(含答案)
- 自動駕駛汽車道路交通安全性探討研究論文
評論
0/150
提交評論