




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省鄞州區(qū)四校聯(lián)考數(shù)學九上期末檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,在△ABC中,M,N分別為AC,BC的中點.則△CMN與△CAB的面積之比是()A.1:2 B.1:3 C.1:4 D.1:92.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.3.某人沿著斜坡前進,當他前進50米時上升的高度為25米,則斜坡的坡度是()A. B.1:3 C. D.1:24.樣本中共有5個個體,其值分別為a,0,1,2,3.若該樣本的平均值為1,則樣本方差為()A.65 B.65 C.2 D.5.如圖,在正方形ABCD的外側,作等邊三角形ADE,則∠BED為()A.45° B.15° C.10° D.125°6.如圖,點、分別在的邊、上,且與不平行.下列條件中,能判定與相似的是()A. B. C. D.7.一個幾何體由若干個相同的正方體組成,其主視圖和左視圖如圖所示,則組成這個幾何體的正方體個數(shù)最小值為()A.5 B.6 C.7 D.88.如圖所示,圖中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點M、N,BA、DC的延長線交于點P,聯(lián)結OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數(shù)是()A.1 B.2 C.3 D.410.如圖,在中,點P在邊AB上,則在下列四個條件中::;;;,能滿足與相似的條件是()A. B. C. D.二、填空題(每小題3分,共24分)11.反比例函數(shù)和在第一象限的圖象如圖所示,點A在函數(shù)圖像上,點B在函數(shù)圖像上,AB∥y軸,點C是y軸上的一個動點,則△ABC的面積為_____.12.如圖,在△ABC中,∠BAC=60°,將△ABC繞著點A順時針旋轉40°后得到△ADE,則∠BAE=_____.13.如圖,,,若,則_________.14.已知反比例函數(shù)的圖象經(jīng)過點(2,﹣3),則此函數(shù)的關系式是________.15.如圖,A是反比例函數(shù)圖象上的一點,點B、D在軸正半軸上,是關于點D的位似圖形,且與的位似比是1:3,的面積為1,則的值為____.16.一個小球在如圖所示的方格地板上自由滾動,并隨機停留在某塊地板上,每塊地板大小、質地完全相同,那么該小球停留在黑色區(qū)域的概率是______.17.如圖,一段拋物線記為,它與軸的交點為,頂點為;將繞點旋轉180°得到,交軸于點為,頂點為;將繞點旋轉180°得到,交軸于點為,頂點為;……,如此進行下去,直至到,頂點為,則頂點的坐標為_________.18.如圖,將繞著點順時針旋轉后得到,若,,則的度數(shù)是__________.三、解答題(共66分)19.(10分)如圖,在中,是內(nèi)心,是邊上一點,以點為圓心,為半徑的經(jīng)過點.求證:是的切線;已知的半徑是.①若是的中點,,則;②若,求的長.20.(6分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(-3,4),點B的坐標為(6,n).(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)連接OB,求△AOB的面積;(3)在x軸上是否存在點P,使△APC是直角三角形.若存在,求出點P的坐標;若不存在,請說明理由.21.(6分)如圖,在矩形ABCD中,AB=6,BC=4,動點Q在邊AB上,連接CQ,將△BQC沿CQ所在的直線對折得到△CQN,延長QN交直線CD于點M.(1)求證:MC=MQ(2)當BQ=1時,求DM的長;(3)過點D作DE⊥CQ,垂足為點E,直線QN與直線DE交于點F,且,求BQ的長.22.(8分)我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在△ABC中,AB>AC,點D,E分別在AB,AC上,設CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結論.23.(8分)如圖,已知△ABC中,AB=8,BC=10,AC=12,D是AC邊上一點,且AB2=AD?AC,連接BD,點E、F分別是BC、AC上兩點(點E不與B、C重合),∠AEF=∠C,AE與BD相交于點G.(1)求BD的長;(2)求證△BGE∽△CEF;(3)連接FG,當△GEF是等腰三角形時,直接寫出BE的所有可能的長度.24.(8分)如圖,銳角三角形中,,分別是,邊上的高,垂足為,.(1)證明:.(2)若將,連接起來,則與能相似嗎?說說你的理由.25.(10分)如圖,有一座圓弧形拱橋,它的跨度為,拱高為,當洪水泛濫到跨度只有時,就要采取緊急措施,若某次洪水中,拱頂離水面只有,即時,試通過計算說明是否需要采取緊急措施.26.(10分)(1)用配方法解方程:;(2)用公式法解方程:.
參考答案一、選擇題(每小題3分,共30分)1、C【解題分析】由M、N分別為AC、BC的中點可得出MN∥AB,AB=2MN,進而可得出△ABC∽△MNC,根據(jù)相似三角形的性質即可得到結論.【題目詳解】∵M、N分別為AC、BC的中點,∴MN∥AB,且AB=2MN,∴△ABC∽△MNC,∴()2=.故選C.【題目點撥】本題考查了相似三角形的判定與性質以及三角形中位線定理,根據(jù)三角形中位線定理結合相似三角形的判定定理找出△ABC∽△MNC是解題的關鍵.2、D【解題分析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.3、A【分析】根據(jù)題意,利用勾股定理可先求出某人走的水平距離,再求出這個斜坡的坡度即可.【題目詳解】解:根據(jù)題意,某人走的水平距離為:,∴坡度;故選:A.【題目點撥】此題主要考查學生對坡度的理解,在熟悉了坡度的定義后利用勾股定理求得水平距離是解決此題的關鍵.4、C【分析】由樣本平均值的計算公式列出關于a的方程,解出a,再利用樣本方差的計算公式求解即可.【題目詳解】由題意知(a+0+1+2+3)÷5=1,解得a=-1,∴樣本方差為故選:C.【題目點撥】本題考查樣本的平均數(shù)、方差求法,屬基礎題,熟記樣本的平均數(shù)、方差公式是解答本題的關鍵5、A【分析】由等邊三角形的性質可得,進而可得,又因為,結合等腰三角形的性質,易得的大小,進而可求出的度數(shù).【題目詳解】是等邊三角形,,,四邊形是正方形,,,,,,.
故選:.【題目點撥】本題考查了正方形的性質,等邊三角形的性質,三角形的內(nèi)角和定理,等腰三角形的性質和判定的應用,解此題的關鍵是求出的度數(shù),難度適中.6、A【分析】根據(jù)兩邊對應成比例且夾角相等的兩個三角形相似即可求解.【題目詳解】解:在與中,∵,且,∴.故選:A.【題目點撥】此題考查了相似三角形的判定:(1)平行線法:平行于三角形的一邊的直線與其他兩邊相交,所構成的三角形與原三角形相似;(2)三邊法:三組對應邊的比相等的兩個三角形相似;(3)兩邊及其夾角法:兩組對應邊的比相等且夾角相等的兩個三角形相似;(4)兩角法:有兩組角對應相等的兩個三角形相似.7、A【分析】根據(jù)題意分別找到2層組合幾何體的最少個數(shù),相加即可.【題目詳解】解:底層正方體最少的個數(shù)應是3個,第二層正方體最少的個數(shù)應該是2個,因此這個幾何體最少有5個小正方體組成,故選:A.【題目點撥】本題考查三視圖相關,解決本題的關鍵是利用“主視圖瘋狂蓋,左視圖拆違章”找到所需最少正方體的個數(shù)進行分析即可.8、C【解題分析】根據(jù)軸對稱圖形和中心對稱圖形的定義(軸對稱圖形是沿某條直線對折,對折的兩部分能夠完全重合的圖形,中心對稱圖形是繞著某一點旋轉后能與自身重合的圖形)判斷即可.【題目詳解】解:A選項是中心對稱圖形但不是軸對稱圖形,A不符合題意;B選項是軸對稱圖形但不是中心對稱圖形,B不符合題意;C選項既是軸對稱圖形又是中心對稱圖形,C符合題意;D選項既不是軸對稱圖形又不是中心對稱圖形.故選:C.【題目點撥】本題考查了軸對稱圖形與中心對稱圖形,熟練掌握軸對稱圖形與中心對稱圖形的判斷方法是解題的關鍵.9、D【解題分析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.10、D【分析】根據(jù)相似三角形的判定定理,結合圖中已知條件進行判斷.【題目詳解】當,,所以∽,故條件①能判定相似,符合題意;當,,所以∽,故條件②能判定相似,符合題意;當,即AC::AC,因為所以∽,故條件③能判定相似,符合題意;當,即PC::AB,而,所以條件④不能判斷和相似,不符合題意;①②③能判定相似,故選D.【題目點撥】本題考查相似三角形的判定,熟練掌握判定定理是解題的關鍵.二、填空題(每小題3分,共24分)11、1【分析】設A(m,),B(m,),則AB=-,△ABC的高為m,根據(jù)三角形面積公式計算即可得答案.【題目詳解】∵A、B分別為、圖象上的點,AB∥y軸,∴設A(m,),B(m,),∴S△ABC=(-)m=1.故答案為:1【題目點撥】本題考查反比例函數(shù)圖象上點的坐標特征,熟知反比例函數(shù)圖象上點的坐標都滿足反比例函數(shù)的解析式是解題關鍵.12、100°【分析】根據(jù)旋轉角可得∠CAE=40°,然后根據(jù)∠BAE=∠BAC+∠CAE,代入數(shù)據(jù)進行計算即可得解.【題目詳解】解:∵△ABC繞著點A順時針旋轉40°后得到△ADE,
∴∠CAE=40°,
∵∠BAC=60°,
∴∠BAE=∠BAC+∠CAE=60°+40°=100°.
故答案是:100°.【題目點撥】考查了旋轉的性質,解題的關鍵是運用旋轉的性質(圖形和它經(jīng)過旋轉所得的圖形中,對應點到旋轉中心的距離相等,任意一組對應點與旋轉中心的連線所成的角都等于旋轉角;對應線段相等,對應角相等)得出∠CAE=40°.13、1【分析】可得出△OAB∽△OCD,可求出CD的長.【題目詳解】解:∵AB∥CD,
∴△OAB∽△OCD,
∴,
∵,若AB=8,
∴CD=1.
故答案為:1.【題目點撥】此題考查相似三角形的判定與性質,解題的關鍵是熟練掌握基本知識.14、【解題分析】試題分析:利用待定系數(shù)法,直接把已知點代入函數(shù)的解析式即可求得k=-6,所以函數(shù)的解析式為:.15、8【分析】根據(jù)△ABD是△COD關于點D的位似圖形,且△ABD與△COD的位似比是1:3,得出,進而得出假設BD=x,AE=4x,D0=3x,AB=y,根據(jù)△ABD的面積為1,求出xy=2即可得出答案.【題目詳解】過A作AE⊥x軸,∵△ABD是△COD關于點D的位似圖形,且△ABD與△COD的位似是1:3,∴,∴OE=AB,∴,設BD=x,AB=y∴DO=3x,AE=4x,C0=3y,∵△ABD的面積為1,∴xy=1,∴xy=2,∴AB?AE=4xy=8,故答案為:8.【題目點撥】此題考查位似變換,反比例函數(shù)系數(shù)k的幾何意義,待定系數(shù)法求反比例函數(shù)解析式,解題關鍵在于作輔助線.16、【分析】先求出黑色方磚在整個地板中所占的比值,再根據(jù)其比值即可得出結論.【題目詳解】由圖可知,黑色方磚6塊,共有16塊方磚,
∴黑色方磚在整個地板中所占的比值,
∴小球最終停留在黑色區(qū)域的概率是,故答案為:.【題目點撥】本題考查了幾何概率,用到的知識點為:幾何概率=相應的面積與總面積之比.17、(9.5,-0.25)【題目詳解】由拋物線可求;又拋物線某是依次繞系列點旋轉180°,根據(jù)中心對稱的特征得:,.根據(jù)以上可知拋物線頂點的規(guī)律為(的整數(shù));根據(jù)規(guī)律可計算點的橫坐標為,點的縱坐標為.∴頂點的坐標為故答案為:(9.5,-0.25)【題目點撥】本題主要是以二次函數(shù)的圖象及其性質為基礎,再根據(jù)軸對稱和中心對稱找頂點坐標的規(guī)律.關鍵是拋物線頂點到坐標軸的距離的變化,再根據(jù)規(guī)律計算.18、【分析】根據(jù)旋轉的性質,得到,,利用三角形內(nèi)角和定理,得到,即可得到答案.【題目詳解】解:將繞著點順時針旋轉后得到,∴,,∴,∴.故答案為:20°.【題目點撥】本題考查了旋轉的性質,三角形內(nèi)角和定理,以及角的和差問題,解題的關鍵是熟練掌握旋轉的性質,正確求出角的度數(shù).三、解答題(共66分)19、(1)詳見解析;(2)①;②【分析】(1)延長交于,連接.得出,再利用角之間的關系可得出,即,結論即可得證.(2)①利用勾股定理即可求解②由知,,根據(jù)對應線段成比例,可得出AB,AD的值,從而可求出AI的長.【題目詳解】解:(1)證明:延長交于,連接.是的內(nèi)心,平分平分...又,....為的切線.①∵∴.②解:由知,..∴.【題目點撥】本題考查的知識點有圓的切線的判定定理,相似三角形的判定與性質,綜合性較強,利用數(shù)形結合的方法可以更好的理解題目,有助于找出解題的方向.20、(1)反比例函數(shù)的解析式為y=﹣;一次函數(shù)的解析式為y=﹣x+2;(2);(3)存在,滿足條件的P點坐標為(﹣3,0)、(﹣,0).【解題分析】(1)先把代入得到的值,從而確定反比例函數(shù)的解析式為;再利用反比例函數(shù)解析式確定B點坐標為,然后運用待定系數(shù)法確定所求的一次函數(shù)的解析式為即可求得.
(3)過A點作軸于,交x軸于,則點的坐標為;再證明利用相似比計算出則,所以點的坐標為,于是得到滿足條件的P點坐標.【題目詳解】將代入,得∴反比例函數(shù)的解析式為;將代入,得解得將和分別代入得,解得,∴所求的一次函數(shù)的解析式為(2)當時,解得:(3)存在.過A點作軸于,交x軸于,如圖,點坐標為點的坐標為而即點的坐標為∴滿足條件的點坐標為21、(1)見解析;(2)2.1;(3)或2【分析】(1)由矩形的性質得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折疊的性質得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,證出MC=MQ.
(2)設DM=x,則MQ=MC=6+x,MN=1+x,在Rt△CNM中,由勾股定理得出方程,解方程即可.
(3)分兩種情況:①當點M在CD延長線上時,由(1)得:∠MCQ=∠CQM,證出∠FDM=∠F,得出MD=MF,過M作MH⊥DF于H,則DF=2DH,證明△MHD∽△CED,得出,求出MD=CD=1,MC=MQ=7,由勾股定理得出MN即可解決問題.
②當點M在CD邊上時,同①得出BQ=2即可.【題目詳解】(1)證明:∵四邊形ABCD是矩形,
∴DC∥AB
即∠MCQ=∠CQB,
∵△BQC沿CQ所在的直線對折得到△CQN,
∴∠CQN=∠CQB,
即∠MCQ=∠MQC,
∴MC=MQ.
(2)∵四邊形ABCD是矩形,△BQC沿CQ所在的直線對折得到△CQN,
∴∠CNM=∠B=90°,
設DM=x,則MQ=MC=6+x,MN=1+x,
在Rt△CNM中,MB2=BN2+MN2,
即(x+6)2=42+(x+1)2,
解得:x=,
∴DM=,
∴DM的長2.1.
(3)解:分兩種情況:
①當點M在CD延長線上時,如圖所示:
由(1)得∠MCQ=∠MQC,
∵DE⊥CQ,
∴∠CDE=∠F,
又∵∠CDE=∠FDM,
∴∠FDM=∠F,
∴MD=MF.
過M點作MH⊥DF于H,則DF=2DH,
又,∴,
∵DE⊥CQ
MH⊥DF,
∴∠MHD=∠DEC=90°,
∴△MHD∽△DEC
∴,
∴DM=1,MC=MQ=7,
∴MN=
∴BQ=NQ=
②當點M在CD邊上時,如圖所示,類似可求得BQ=2.
綜上所述,BQ的長為或2.【題目點撥】此題考查四邊形綜合題,翻折變換的性質,矩形的性質,等腰三角形的判定,勾股定理,相似三角形的判定與性質,解題關鍵在于掌握各性質定義和需要進行分類討論.22、存在等對邊四邊形,是四邊形DBCE,見解析【分析】作CG⊥BE于G點,作BF⊥CD交CD延長線于F點,證明△BCF≌△CBG,得到BF=CG,再證∠BDF=∠BEC,得到△BDF≌△CEG,故而BD=CE,即四邊形DBCE是等對邊四邊形.【題目詳解】解:此時存在等對邊四邊形,是四邊形DBCE.如圖,作CG⊥BE于G點,作BF⊥CD交CD延長線于F點.∵∠DCB=∠EBC=∠A,BC為公共邊,∴△BCF≌△CBG,∴BF=CG,∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,∴∠BDF=∠BEC,∴△BDF≌△CEG,∴BD=CE∴四邊形DBCE是等對邊四邊形.【題目點撥】此題考查新定義形式下三角形全等的判定,由題意及圖形分析得到等對邊四邊形是四邊形DBCE,應證明線段BD=CE,只能作輔助線通過證明三角形全等得到結論,繼而得解此題.23、(1);(2)見解析;(3)4或﹣5+或﹣3+【分析】(1)證明△ADB∽△ABC,可得,由此即可解決問題.(2)想辦法證明∠BEA=∠EFC,∠DBC=∠C即可解決問題.(3)分三種情形構建方程組解決問題即可.【題目詳解】(1)∵AB=8,AC=12,又∵AB2=AD?AC∴∵AB2=AD?AC,∴,又∵∠BAC是公共角∴△ADB∽△ABC,∴∴=∴.(2)∵AC=12,,∴,∴BD=CD,∴∠DBC=∠C,∵△ADB∽△ABC∴∠ABD=∠C,∴∠ABD=∠DBC,∵∠BEF=∠C+∠EFC,即∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE.(3)如圖中,過點A作AH∥BC,交BD的延長線于點H,設BE=x,CF=y,∵AH∥BC,∴====,∵BD=CD=,AH=8,∴AD=DH=,∴BH=12,∵AH∥BC,∴=,∴=,∴BG=,∵∠BEF=∠C+∠EFC,∴∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE,∴=,∴=,∴y=;當△GEF是等腰三角形時,存在以下三種情況:①若GE=GF,如圖中,則∠GEF=∠GFE=∠C=∠DBC,∴△GEF∽△DBC,∵BC=10,DB=DC=,∴==,又∵△BEG∽△CFE,∴==,即=,又∵y=,∴x=BE=4;②若EG=EF,如圖中,則△BEG與△CFE全等,∴BE=CF,即x=y,又∵y=,∴x=BE=﹣5+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025「最高額」委托代理合同
- 2025家具供應合同范本
- 瑜伽館聘用老師合同協(xié)議
- 玉米苗收購合同協(xié)議
- 白金定點采購合同協(xié)議
- 珠寶售后寄賣合同協(xié)議
- 電廠采購麥秸桿合同協(xié)議
- 甲乙方合作合同協(xié)議
- 電梯定制安裝合同協(xié)議
- 甲方擅自轉租合同協(xié)議
- 北師大版小學數(shù)學家長會發(fā)言稿范文
- 基于改進YOLOv8的電梯內(nèi)電動車檢測算法研究
- 2025年全球及中國玻璃通孔(TGV)工藝的激光設備行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2008年高考數(shù)學試卷(文)(全國卷Ⅱ)(解析卷)
- 2024年中國儲能產(chǎn)業(yè)研究報告
- GMP取樣管理課件
- 安徽省普通高中2024學年學業(yè)水平合格性測試英語試題(原卷版)
- 《中國古代物理學》課件
- 《阿西莫夫短文兩篇》-課件
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- 書店承包經(jīng)營合同2024版
評論
0/150
提交評論