新高考數(shù)學(xué)二輪復(fù)習(xí)易錯(cuò)題專練易錯(cuò)點(diǎn)09 不等式(含解析)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)易錯(cuò)題專練易錯(cuò)點(diǎn)09 不等式(含解析)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)易錯(cuò)題專練易錯(cuò)點(diǎn)09 不等式(含解析)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)易錯(cuò)題專練易錯(cuò)點(diǎn)09 不等式(含解析)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)易錯(cuò)題專練易錯(cuò)點(diǎn)09 不等式(含解析)_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

易錯(cuò)點(diǎn)09不等式易錯(cuò)題【01】利用同向相加求范圍出錯(cuò)利用同向相加求變量或式子的取值范圍,是最常用的方法,但如果多次使用不等式的可加性,變量或式子中的等號可能不會同時(shí)取到,會導(dǎo)致范圍擴(kuò)大.易錯(cuò)題【02】解分?jǐn)?shù)不等式忽略分母不為零解含有分?jǐn)?shù)的不等式,在去分母時(shí)要注意分母不為零的限制條件,防止出現(xiàn)增解,如SKIPIF1<0.易錯(cuò)題【03】連續(xù)使用均值不等式忽略等號能否同時(shí)成立連續(xù)使用均值不等式求最值或范圍,要注意判斷每個(gè)等號成立的條件,檢驗(yàn)等號能否同時(shí)成立.易錯(cuò)題【04】混淆單變量與雙變量(1)SKIPIF1<0恒成立SKIPIF1<0的最小值大于零;(2)SKIPIF1<0恒成立SKIPIF1<0;(3)SKIPIF1<0SKIPIF1<0使得SKIPIF1<0成立SKIPIF1<0的最大值大于零;(4)SKIPIF1<0使得SKIPIF1<0恒成立SKIPIF1<0;易錯(cuò)題【05】解含有參數(shù)的不等式分類不當(dāng)致誤(1)解含有參數(shù)的不等式要注意判斷是否需要對參數(shù)進(jìn)行分類討論,分類要滿足互斥、無漏、最簡.(2)解形如SKIPIF1<0的不等式,首先要對SKIPIF1<0的符號進(jìn)行討論,當(dāng)a的符號確定后再根據(jù)判別式的符號或兩根的大小進(jìn)行討論. 01設(shè)f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,則f(-2)的取值范圍是________.【警示】本題常見的錯(cuò)誤解法是:由已知得eq\b\lc\{\rc\(\a\vs4\al\co1(1≤a-b≤2,①,2≤a+b≤4,②))①+②得3≤2a≤6,∴6≤4a≤12,又由①可得-2≤-a+b≤-1,③②+③得0≤2b≤3,∴-3≤-2b≤0,又f(-2)=4a-2b,∴3≤4a-2b≤12,∴f(-2)的取值范圍是[3,12].【答案】SKIPIF1<0【問診】正確解法是:由SKIPIF1<0得SKIPIF1<0∴f(-2)=4a-2b=3f(-1)+f(1).又∵1≤f(-1)≤2,2≤f(1)≤4,∴5≤3f(-1)+f(1)≤10,故5≤f(-2)≤10.【叮囑】在求式子的范圍時(shí),如果多次使用不等式的可加性,式子中的等號不能同時(shí)取到,會導(dǎo)致范圍擴(kuò)大.1.已知實(shí)數(shù)x,y滿足SKIPIF1<0,SKIPIF1<0,則()A.1≤x≤3 B.SKIPIF1<02≤y≤1 C.2≤4x+y≤15 D.SKIPIF1<0xSKIPIF1<0ySKIPIF1<0【答案】C【解析】∵SKIPIF1<0,SKIPIF1<0,∴兩式相加,得SKIPIF1<0,即1≤x≤4,故A錯(cuò)誤;∵SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,故B錯(cuò)誤;∵SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,故C正確;∵SKIPIF1<0,又SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0,故D錯(cuò)誤.故選C.2.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0.設(shè)SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0單調(diào)遞增,所以SKIPIF1<0.故選C. 02解不等式SKIPIF1<0.【警示】本題易錯(cuò)之處是誤以為SKIPIF1<0SKIPIF1<0.【問診】SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0.【叮囑】SKIPIF1<0,SKIPIF1<0且SKIPIF1<0.1.設(shè)集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】集合SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選D.2.設(shè)SKIPIF1<0,那么“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】B【解析】由不等式SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不一定成立,即充分性不成立;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,即必要性成立,所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選B. 03已知x>0,y>0,且eq\f(1,x)+eq\f(2,y)=1,則x+y的最小值是________.【警示】本題錯(cuò)誤解法是:∵x>0,y>0,∴1=eq\f(1,x)+eq\f(2,y)≥2eq\r(\f(2,xy)),∴eq\r(xy)≥2eq\r(2),∴x+y≥2eq\r(xy)=4eq\r(2),∴x+y的最小值為4eq\r(2).【答案】3+2eq\r(2)【問診】eq\f(1,x)+eq\f(2,y)≥2eq\r(\f(2,xy))取等號的條件是SKIPIF1<0,即SKIPIF1<0,x+y≥2eq\r(xy)取等號的條件是SKIPIF1<0與SKIPIF1<0矛盾.正確解法為:∵x>0,y>0,∴x+y=(x+y)(eq\f(1,x)+eq\f(2,y))=3+eq\f(y,x)+eq\f(2x,y)≥3+2eq\r(2)(當(dāng)且僅當(dāng)y=eq\r(2)x時(shí)取等號),∴當(dāng)x=eq\r(2)+1,y=2+eq\r(2)時(shí),(x+y)min=3+2eq\r(2).【叮囑】多次使用基本不等式要驗(yàn)證等號成立的條件.1.(2022屆遼寧省東北育才學(xué)校高三上學(xué)期模擬)圓SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由圓SKIPIF1<0可得標(biāo)準(zhǔn)方程為SKIPIF1<0,因?yàn)閳ASKIPIF1<0關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0該直線經(jīng)過圓心SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號,故選C.2.(2022屆河南省名校大聯(lián)考高三上學(xué)期期中)已知正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則當(dāng)SKIPIF1<0與SKIPIF1<0同時(shí)取得最大值時(shí),SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號成立;又由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),等號成立,所以當(dāng)SKIPIF1<0與SKIPIF1<0同時(shí)取得最大值時(shí),則有SKIPIF1<0,解得SKIPIF1<0,此時(shí)SKIPIF1<0.故選B. 04已知SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,(1)若對任意SKIPIF1<0,恒有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)若對任意SKIPIF1<0,恒有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍;【警示】本題易混淆單變量與雙變量【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【問診】(1)設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0時(shí)SKIPIF1<0=SKIPIF1<0>0,所以SKIPIF1<0在SKIPIF1<0上是增函數(shù),由此可求得SKIPIF1<0的值域是[0,SKIPIF1<0],所以實(shí)數(shù)SKIPIF1<0的取值范圍是[0,SKIPIF1<0].對任意SKIPIF1<0,恒有SKIPIF1<0,即SKIPIF1<0時(shí)SKIPIF1<0SKIPIF1<0恒成立,即SKIPIF1<0SKIPIF1<0,由⑵可知SKIPIF1<0SKIPIF1<00.(2)由題中條件可得SKIPIF1<0的值域SKIPIF1<0SKIPIF1<0的值域SKIPIF1<0,若對任意SKIPIF1<0,恒有SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.【叮囑】①若SKIPIF1<0值域?yàn)镾KIPIF1<0,則不等式SKIPIF1<0SKIPIF1<0恒成立SKIPIF1<0SKIPIF1<0SKIPIF1<0;不等式SKIPIF1<0SKIPIF1<0有解SKIPIF1<0SKIPIF1<0SKIPIF1<0;②若SKIPIF1<0值域?yàn)镾KIPIF1<0,則不等式SKIPIF1<0SKIPIF1<0恒成立SKIPIF1<0SKIPIF1<0SKIPIF1<0;若SKIPIF1<0值域?yàn)镾KIPIF1<0則不等式SKIPIF1<0SKIPIF1<0恒成立SKIPIF1<0SKIPIF1<0SKIPIF1<0.=3\*GB3③設(shè)SKIPIF1<0的最大值為SKIPIF1<0,對任意SKIPIF1<0,SKIPIF1<0的條件SKIPIF1<0,于是問題轉(zhuǎn)化為存在SKIPIF1<0,使得SKIPIF1<0,因此只需SKIPIF1<0的最小值大于SKIPIF1<0即SKIPIF1<0.1.已知SKIPIF1<0SKIPIF1<0,在區(qū)間SKIPIF1<0上存在三個(gè)不同的實(shí)數(shù)SKIPIF1<0,使得以SKIPIF1<0為邊長的三角形是直角三角形,則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由題設(shè)可得SKIPIF1<0,解之得SKIPIF1<0,又由于SKIPIF1<0,所以SKIPIF1<0,故選D.2.已知函數(shù)SKIPIF1<0是定義域上的奇函數(shù),且SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的解析式,判斷函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性并證明;(2)令SKIPIF1<0,若對任意SKIPIF1<0都有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)根據(jù)題意得到SKIPIF1<0,SKIPIF1<0,從而得到SKIPIF1<0,再解方程組即可;(2)根據(jù)題意得到SKIPIF1<0,設(shè)SKIPIF1<0,得到SKIPIF1<0,根據(jù)SKIPIF1<0,再利用二次函數(shù)的性質(zhì)得到SKIPIF1<0,SKIPIF1<0,從而得到SKIPIF1<0,解不等式即可.(1)SKIPIF1<0,又SKIPIF1<0是奇函數(shù),SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,此時(shí),經(jīng)檢驗(yàn)SKIPIF1<0滿足題意,SKIPIF1<0(2)由題意知SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,由可知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,函數(shù)SKIPIF1<0的對稱軸方程為SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;即SKIPIF1<0,SKIPIF1<0,又對SKIPIF1<0,都有SKIPIF1<0恒成立,SKIPIF1<0即SKIPIF1<0解得,SKIPIF1<0又SKIPIF1<0,SKIPIF1<0的取值范圍是SKIPIF1<0. 05解關(guān)于x的不等式ax2-(a+1)x+1<0.【警示】本題錯(cuò)誤解法為:原不等式化為a(x-eq\f(1,a))(x-1)<0.∴當(dāng)a>1時(shí),不等式的解集為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),1)).當(dāng)a<1時(shí),不等式的解集為eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,a))).【答案】當(dāng)a<0時(shí),不等式的解集為eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(1,a)))∪(1,+∞);當(dāng)a=0時(shí),不等式的解集為(1,+∞);當(dāng)0<a<1時(shí),不等式的解集為eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,a)));當(dāng)a=1時(shí),不等式的解集為SKIPIF1<0;當(dāng)a>1時(shí),不等式的解集為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),1)).【問診】解本題容易出現(xiàn)的錯(cuò)誤是:(1)認(rèn)定這個(gè)不等式就是一元二次不等式,忽視了對a=0時(shí)的討論;(2)在不等式兩端約掉系數(shù)a時(shí),若a<0,忘記改變不等號的方向;(3)忽視了對根的大小的討論,特別是等根的討論;(4)分類討論后,最后對結(jié)論不進(jìn)行整合.正確解法:當(dāng)a=0時(shí),不等式的解集為{x|x>1}.當(dāng)a≠0時(shí),不等式化為aeq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,a)))(x-1)<0.當(dāng)a<0時(shí),原不等式等價(jià)于eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,a)))(x-1)>0,不等式的解集為{x|x>1或x<eq\f(1,a)};當(dāng)0<a<1時(shí),1<eq\f(1,a),不等式的解集為{x|1<x<eq\f(1,a)};當(dāng)a>1時(shí),eq\f(1,a)<1,不等式的解集為{x|eq\f(1,a)<x<1};當(dāng)a=1時(shí),不等式的解集為?.綜上所述,當(dāng)a<0時(shí),不等式的解集為eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(1,a)))∪(1,+∞);當(dāng)a=0時(shí),不等式的解集為(1,+∞);當(dāng)0<a<1時(shí),不等式的解集為eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,a)));當(dāng)a=1時(shí),不等式的解集為SKIPIF1<0;當(dāng)a>1時(shí),不等式的解集為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),1)).【糾錯(cuò)筆記】解形如ax2+bx+c>0的不等式,應(yīng)對系數(shù)a分a>0,a=0,a<0進(jìn)行討論,還要討論各根的大小,最后根據(jù)不同情況分別寫出不等式的解集.1.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0在SKIPIF1<0上的值域;(2)當(dāng)SKIPIF1<0時(shí),解關(guān)于SKIPIF1<0的不等式SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是開口向上,對稱軸為SKIPIF1<0的二次函數(shù),又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增;所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0.(2)∵SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即解集為SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0且SKIPIF1<0開口方向向下,所以SKIPIF1<0的解集為SKIPIF1<0③當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,即SKIPIF1<0時(shí),原不等式的解集為SKIPIF1<0;若SKIPIF1<0,即SKIPIF1<0,原不等式的解集為SKIPIF1<0若SKIPIF1<0,即SKIPIF1<0,原不等式的解集為SKIPIF1<0綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的解集為SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的解集為SKIPIF1<0.2.設(shè)函數(shù)SKIPIF1<0.(1)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0有實(shí)數(shù)解,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)若不等式SKIPIF1<0對于實(shí)數(shù)SKIPIF1<0時(shí)恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)解關(guān)于SKIPIF1<0的不等式:SKIPIF1<0.【解析】(1)依題意,SKIPIF1<0有實(shí)數(shù)解,即不等式SKIPIF1<0有實(shí)數(shù)解,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有實(shí)數(shù)解,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),取SKIPIF1<0,則SKIPIF1<0成立,即SKIPIF1<0有實(shí)數(shù)解,于是得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),二次函數(shù)SKIPIF1<0的圖象開口向下,要SKIPIF1<0有解,當(dāng)且僅當(dāng)SKIPIF1<0,從而得SKIPIF1<0,綜上,SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0;(2)不等式SKIPIF1<0對于實(shí)數(shù)SKIPIF1<0時(shí)恒成立,即SKIPIF1<0,顯然SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,從而得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0;(3)不等式SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式可化為SKIPIF1<0,而SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式可化為SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),原不等式的解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),原不等式的解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),原不等式的解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),原不等式的解集為SKIPIF1<0.錯(cuò)1.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的什么條件()A.既不充分又不必要條件 B.充要條件C.必要不充分條件 D.充分不必要條件【答案】D【解析】SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的充分不必要條件.故選D.2.(2021屆海南熱帶海洋學(xué)院附屬中學(xué)高三月考)關(guān)于SKIPIF1<0的不等式SKIPIF1<0對SKIPIF1<0恒成立的一個(gè)必要不充分條件是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】A【解析】關(guān)于SKIPIF1<0的不等式SKIPIF1<0對SKIPIF1<0恒成立,則SKIPIF1<0,根據(jù)題意知,選項(xiàng)能推出題干,題干推不出選項(xiàng),故題干的范圍是選項(xiàng)范圍的子集,只有A選項(xiàng)符合題意.故選A.3.(2022屆重慶市第一中學(xué)高三上學(xué)期期中)若SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.1 C.2 D.4【答案】D【解析】由題意得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號成立,所以SKIPIF1<0的最小值為4.故選D4.已知實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故選B.5.(2021屆浙江省紹興市高三上學(xué)期測試)已知SKIPIF1<0,不等式SKIPIF1<0在SKIPIF1<0上恒成立,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】∵SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∵上述不等式恒成立,∴SKIPIF1<0,即SKIPIF1<0(否則取SKIPIF1<0,則左邊SKIPIF1<0,矛盾),此時(shí)不等式轉(zhuǎn)化為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,故選D.6.已知函數(shù)SKIPIF1<0,若對任意SKIPIF1<0,都有SKIPIF1<0,則實(shí)數(shù)m的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由已知得SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,所以對任意SKIPIF1<0,SKIPIF1<0,所以對任意SKIPIF1<0,都有SKIPIF1<0,等價(jià)于SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)m的取值范圍是SKIPIF1<0,故選B.7.(多選題)當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0恒成立,則SKIPIF1<0的取值可能是()A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】AB【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立.因?yàn)镾KIPIF1<0.若SKIPIF1<0恒成立,則SKIPIF1<0,解得SKIPIF1<0.故選AB.8.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為___________.【答案】SKIPIF1<0.【解析】設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則原式SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取“=”.9.函數(shù)SKIPIF1<0,a為參數(shù),(1)解關(guān)于x的不等式SKIPIF1<0;(2)當(dāng)SKIPIF1<0,SKIPIF1<0最大值為M,最小值為m,若SKIPIF1<0,求參數(shù)a的取值范圍;(3)若SKIPIF1<0在區(qū)間SKIPIF1<0上滿足SKIPIF1<0有兩解,求a的取值范圍【解析】(1)由題意可得:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不等式的解為SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),不等式的解為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不等式的解為SKIPIF1<0或SKIPIF1<0;綜上:當(dāng)SKIPIF1<0時(shí),不等式的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),不等式的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),不等式的解集為SKIPIF1<0;(2)由題意:SKIPIF1<0,即SKIPIF1<0是開口向上,以SKIPIF1<0為對稱軸的二次函數(shù),當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),滿足SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),有SKIPIF1<0,可得SKIPIF1<0,故a不存在;綜上可得參數(shù)a的取值范圍SKIPIF1<0;(3)由題意:SKIPIF1<0,可得SKIPIF1<0且SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,由因?yàn)镾KIPIF1<0的對稱軸為SKIPIF1<0,故可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論