版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
湖南省邵陽市綏寧縣2024屆九年級數(shù)學第一學期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在中,,,為邊上的一點,且.若的面積為,則的面積為()A. B. C. D.2.某同學用一根長為(12+4π)cm的鐵絲,首尾相接圍成如圖的扇形(不考慮接縫),已知扇形半徑OA=6cm,則扇形的面積是()A.12πcm2 B.18πcm2 C.24πcm2 D.36πcm23.下列說法中,不正確的是()A.圓既是軸對稱圖形又是中心對稱圖形 B.圓有無數(shù)條對稱軸C.圓的每一條直徑都是它的對稱軸 D.圓的對稱中心是它的圓心4.已知反比例函數(shù)y=的圖象如圖所示,則二次函數(shù)y=k2x2+x﹣2k的圖象大致為()A. B.C. D.5.如圖,在△ABC中,點D,E分別在邊AB,AC上,且,則S△ADE:S四邊形BCED的值為()A.1: B.1:3 C.1:8 D.1:96.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°得到△A′B′C′的位置,連接C′B,則C′B的長為()A.2- B. C. D.17.如圖,⊙O的半徑為2,△ABC為⊙O內(nèi)接等邊三角形,O為圓心,OD⊥AB,垂足為D.OE⊥AC,垂足為E,連接DE,則DE的長為()A.1 B. C. D.28.已知反比例函數(shù)y=的圖象經(jīng)過點P(﹣1,2),則這個函數(shù)的圖象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限9.如圖,在正方形ABCD中,點E是CD的中點,點F是BC上的一點,且BF=3CF,連接AE、AF、EF,下列結(jié)論:①∠DAE=30°,②△ADE∽△ECF,③AE⊥EF,④AE2=AD?AF,其中正確結(jié)論的個數(shù)是()A.1個 B.2個 C.3個 D.4個10.如圖,A、D是⊙O上的兩個點,若∠ADC=33°,則∠ACO的大小為()A.57° B.66° C.67° D.44°二、填空題(每小題3分,共24分)11.二次函數(shù)的部分圖象如圖所示,圖象過點,對稱軸為直線,下列結(jié)論:①;②;③一元二次方程的解是,;④當時,,其中正確的結(jié)論有__________.12.150°的圓心角所對的弧長是5πcm,則此弧所在圓的半徑是______cm.13.拋物線的頂點坐標是______.14.如圖,在反比例函數(shù)位于第一象限內(nèi)的圖象上取一點P1,連結(jié)OP1,作P1A1⊥x軸,垂足為A1,在OA1的延長線上截取A1B1=OA1,過B1作OP1的平行線,交反比例函數(shù)的圖象于P2,過P2作P2A2⊥x軸,垂足為A2,在OA2的延長線上截取A2B2=B1A2,連結(jié)P1B1,P2B2,則的值是.15.如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=,以點A為圓心,AD為半徑的圓與BC相切于點E,交AB于點F,則弧DF的長為_________.16.已知關于x的方程有兩個不相等的實數(shù)根,則的取值范__________.17.小慧準備給媽媽打個電話,但她只記得號碼的前位,后三位由,,這三個數(shù)字組成,具體順序忘記了,則她第一次試撥就撥通電話的概率是________.18.如圖,若被擊打的小球飛行高度(單位:)與飛行時間(單位:)之間具有的關系為,則小球從飛出到落地所用的時間為_____.三、解答題(共66分)19.(10分)如圖,四邊形是正方形,連接,將繞點逆時針旋轉(zhuǎn)得,連接,為的中點,連接,.(1)如圖1,當時,求證:;(2)如圖2,當時,(1)還成立嗎?請說明理由.20.(6分)如圖,點E是△ABC的內(nèi)心,AE的延長線與△ABC的外接圓相交于點D.(1)若∠BAC=70°,求∠CBD的度數(shù);(2)求證:DE=DB.21.(6分)如圖,在矩形ABCD中,AB=4,BC=6,點M是BC的中點.(1)在AM上求作一點E,使△ADE∽△MAB(尺規(guī)作圖,不寫作法);(2)在(1)的條件下,求AE的長.22.(8分)在平面直角坐標系中,將二次函數(shù)的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與軸交于點、(點在點的左側(cè)),,經(jīng)過點的一次函數(shù)的圖象與軸正半軸交于點,且與拋物線的另一個交點為,的面積為1.(1)求拋物線和一次函數(shù)的解析式;(2)拋物線上的動點在一次函數(shù)的圖象下方,求面積的最大值,并求出此時點E的坐標;(3)若點為軸上任意一點,在(2)的結(jié)論下,求的最小值.23.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與兩坐標軸分別交于點A、B、C,直線y=﹣x+4經(jīng)過點B,與y軸交點為D,M(3,﹣4)是拋物線的頂點.(1)求拋物線的解析式.(2)已知點N在對稱軸上,且AN+DN的值最?。簏cN的坐標.(3)在(2)的條件下,若點E與點C關于對稱軸對稱,請你畫出△EMN并求它的面積.(4)在(2)的條件下,在坐標平面內(nèi)是否存在點P,使以A、B、N、P為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.24.(8分)如圖,點D在以AB為直徑的⊙O上,AD平分,,過點B作⊙O的切線交AD的延長線于點E.(1)求證:直線CD是⊙O的切線.(2)求證:.25.(10分)王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹,成活98%.現(xiàn)已掛果,經(jīng)濟效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹上的楊梅,每棵的產(chǎn)量如折線統(tǒng)計圖所示.(1)分別計算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;(2)試通過計算說明,哪個山上的楊梅產(chǎn)量較穩(wěn)定?26.(10分)已知關于的方程(1)求證:無論為何值,方程總有實數(shù)根.(2)設,是方程的兩個根,記,S的值能為2嗎?若能,求出此時的值;若不能,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)相似三角形的判定定理得到,再由相似三角形的性質(zhì)得到答案.【題目詳解】∵,,∴,∴,即,解得,的面積為,∴的面積為:,故選C.【題目點撥】本題考查相似三角形的判定定理和性質(zhì),解題的關鍵是熟練掌握相似三角形的判定定理和性質(zhì).2、A【分析】首先根據(jù)鐵絲長和扇形的半徑求得扇形的弧長,然后根據(jù)弧長公式求得扇形的圓心角,然后代入扇形面積公式求解即可.【題目詳解】解:∵鐵絲長為(12+4π)cm,半徑OA=6cm,∴弧長為4πcm,∴扇形的圓心角為:=120°,∴扇形的面積為:=12πcm2,故選:A.【題目點撥】本題考查了扇形的面積的計算,解題的關鍵是了解扇形的面積公式及弧長公式,難度不大.3、C【分析】圓有無數(shù)條對稱軸,但圓的對稱軸是直線,故C圓的每一條直線都是它的對稱軸的說法是錯誤的【題目詳解】本題不正確的選C,理由:圓有無數(shù)條對稱軸,其對稱軸都是直線,故任何一條直徑都是它的對稱軸的說法是錯誤的,正確的說法應該是圓有無數(shù)條對稱軸,任何一條直徑所在的直線都是它的對稱軸故選C【題目點撥】此題主要考察對稱軸圖形和中心對稱圖形,難度不大4、A【分析】先根據(jù)已知圖象確定反比例函數(shù)的系數(shù)k的正負,然后再依次確定二次函數(shù)的開口方向、對稱軸、與y軸的交點坐標確定出合適圖象即可.【題目詳解】解:∵反比例函數(shù)圖象位于第一三象限,∴k>0,∴k2>0,﹣2k<0,∴拋物線與y軸的交點(0,-2k)在y軸負半軸,∵k2>0,∴二次函數(shù)圖象開口向上,∵對稱軸為直線x=<0,∴對稱軸在y軸左邊,縱觀各選項,只有A選項符合.故選:A.【題目點撥】本題考查了二次函數(shù)和反比例函數(shù)的圖象特征,根據(jù)反比例函數(shù)圖象確定k的正負、熟知二次函數(shù)的性質(zhì)是解題的關鍵.5、C【分析】易證△ADE∽△ABC,然后根據(jù)相似三角形面積的比等于相似比的平方,繼而求得S△ADE:S四邊形BCED的值.【題目詳解】∵,∠A=∠A,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:9,∴S△ADE:S四邊形BCED=1:8,故選C.【題目點撥】此題考查了相似三角形的判定與性質(zhì).此題難度不大,注意掌握相似三角形面積的比等于相似比的平方定理的應用是解此題的關鍵.6、C【分析】如圖,連接BB′,延長BC′交AB′于點D,證明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的長,即可解決問題.【題目詳解】解:如圖,連接BB′,延長BC′交AB′于點D,
由題意得:∠BAB′=60°,BA=B′A,
∴△ABB′為等邊三角形,
∴∠ABB′=60°,AB=B′B;
在△ABC′與△B′BC′中,∴△ABC′≌△B′BC′(SSS),
∴∠DBB′=∠DBA=30°,
∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故選:C.【題目點撥】本題考查旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),直角三角形斜邊上的中線.作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.7、C【分析】過O作于H,得到,連接OB,由為內(nèi)接等邊三角形,得到,求得,根據(jù)垂徑定理和三角形的中位線定理即可得到結(jié)論.【題目詳解】解:過作于,,連接,為內(nèi)接等邊三角形,,,,,,,,,,故選:.【題目點撥】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱巳切沃形痪€定理.8、D【分析】此題涉及的知識點是反比例函數(shù)的圖像與性質(zhì),根據(jù)點坐標P(﹣1,2)帶入反比例函數(shù)y=中求出k值就可以判斷圖像的位置.【題目詳解】根據(jù)y=的圖像經(jīng)過點P(-1,2),代入可求的k=-2,因此可知k<0,即圖像經(jīng)過二四象限.故選D【題目點撥】此題重點考察學生對于反比例函數(shù)圖像和性質(zhì)的掌握,把握其中的規(guī)律是解題的關鍵.9、C【分析】根據(jù)題意可得tan∠DAE的值,進而可判斷①;設正方形的邊長為4a,根據(jù)題意用a表示出FC,BF,CE,DE,然后根據(jù)相似三角形的判定方法即可對②進行判斷;在②的基礎上利用相似三角形的性質(zhì)即得∠DAE=∠FEC,進一步利用正方形的性質(zhì)即可得到∠DEA+∠FEC=90°,進而可判斷③;利用相似三角形的性質(zhì)即可判斷④.【題目詳解】解:∵四邊形ABCD是正方形,E為CD中點,∴CE=ED=DC=AD,∴tan∠DAE=,∴∠DAE≠30°,故①錯誤;設正方形的邊長為4a,則FC=a,BF=3a,CE=DE=2a,∴,∴,又∠D=∠C=90°,∴△ADE∽△ECF,故②正確;∵△ADE∽△ECF,∴∠DAE=∠FEC,∵∠DAE+∠DEA=90°∴∠DEA+∠FEC=90°,∴AE⊥EF.故③正確;∵△ADE∽△ECF,∴,∴AE2=AD?AF,故④正確.綜上,正確的個數(shù)有3個,故選:C.【題目點撥】本題考查了正方形的性質(zhì)、銳角三角函數(shù)、相似三角形的判定和性質(zhì)等知識,屬于??碱}型,熟練掌握正方形的性質(zhì)和相似三角形的判定和性質(zhì)是解題的關鍵.10、A【分析】由圓周角定理定理得出∠AOC,再由等腰三角形的性質(zhì)得到答案.【題目詳解】解:∵∠AOC與∠ADC分別是弧AC對的圓心角和圓周角,
∴∠AOC=2∠ADC=66°,在△CAO中,AO=CO,∴∠ACO=∠OAC=,故選:A【題目點撥】本題考查了圓周角定理,此題難度不大,注意在同圓或等圓中,同弧或等弧所對圓周角等于它所對圓心角的一半,注意數(shù)形結(jié)合思想的應用.二、填空題(每小題3分,共24分)11、①②④【分析】①由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上得到c>0,由對稱軸為,得到b<0,可以①進行分析判斷;
②由對稱軸為,得到2a=b,b-2a=0,可以②進行分析判斷;
③對稱軸為x=-1,圖象過點(-4,0),得到圖象與x軸另一個交點(2,0),可對③進行分析判斷;
④拋物線開口向下,圖象與x軸的交點為(-4,0),(2,0),即可對④進行判斷.【題目詳解】解:①∵拋物線的開口向下,
∴a<0,
∵與y軸的交點在y軸的正半軸上,
∴c>0,
∵對稱軸為<0
∴b<0,
∴abc>0,故①正確;
②∵對稱軸為,∴2a=b,
∴2a-b=0,故②正確;
③∵對稱軸為x=-1,圖象過點A(-4,0),
∴圖象與x軸另一個交點(2,0),
∴關于x的一元二次方程ax2+bx+c=0的解為x=-4或x=2,故③錯誤;
④∵拋物線開口向下,圖象與x軸的交點為(-4,0),(2,0),
∴當y>0時,-4<x<2,故④正確;∴其中正確的結(jié)論有:①②④;故答案為:①②④.【題目點撥】本題考查了二次函數(shù)的圖象與系數(shù)的關系,解答此類問題的關鍵是掌握二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定,解題時要注意數(shù)形結(jié)合思想的運用.12、1;【解題分析】解:設圓的半徑為x,由題意得:=5π,解得:x=1,故答案為1.點睛:此題主要考查了弧長計算,關鍵是掌握弧長公式l=(弧長為l,圓心角度數(shù)為n,圓的半徑為R).13、(1,3)【分析】根據(jù)頂點式:的頂點坐標為(h,k)即可求出頂點坐標.【題目詳解】解:由頂點式可知:的頂點坐標為:(1,3).故答案為(1,3).【題目點撥】此題考查的是求頂點坐標,掌握頂點式:的頂點坐標為(h,k)是解決此題的關鍵.14、【題目詳解】解:設P1點的坐標為(),P2點的坐標為(b,)∵△OP1B1,△B1P2B2均為等腰三角形,
∴A1B1=OA1,A2B2=B1A2,
∴OA1=a,OB1=2a,B1A2=b-2a,B1B2=2(b-2a),
∵OP1∥B1P2,
∴∠P1OA1=∠A2B1P2,
∴Rt△P1OA1∽Rt△P2B1A2,
∴OA1:B1A2=P1A1:P2A2,a:(b-2a)=整理得a2+2ab-b2=0,解得:a=()b或a=()b(舍去)∴B1B2=2(b-2a)=(6-4)b,∴故答案為:【題目點撥】該題較為復雜,主要考查學生對相似三角形的性質(zhì)和反比例函數(shù)上的點的坐標與幾何圖形之間的關系.15、【解題分析】分析:連接AE,根據(jù)圓的切線的性質(zhì)可得AD⊥BC,解Rt△ABE可求出∠ABE,進而得到∠DAB,然后運用弧長的計算公式即可得出答案.詳解:連接AE,∵BC為圓A的切線,∴AE⊥BC,∴△ABE為直角三角形,∵AD=2,AB=2,∴AE=2,∴△ABE為等腰直角三角形,∴∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB=90°,∴∠BAD=45°+90°=135°,∴弧FED的長=π.點睛:本題主要考查的是圓的切線的性質(zhì)以及弧長的計算公式,屬于中等難度題型.得出∠BAD的度數(shù)是解題的關鍵.16、且;【分析】根據(jù)一元二次方程的定義和根的判別式得出不等式組,求出不等式組的解集即可.【題目詳解】∵關于x的方程(k-1)x1-x+1=0有兩個不相等的實數(shù)根,∴k-1≠0且△=(-1)1-4(k-1)?1=-4k+9>0,即,解得:k<且k≠1,故答案為k<且k≠1.【題目點撥】本題考查了一元二次方程的定義和根的判別式,能得出關于k的不等式組是解此題的關鍵.17、【解題分析】首先根據(jù)題意可得:可能的結(jié)果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【題目詳解】∵她只記得號碼的前5位,后三位由5,1,2,這三個數(shù)字組成,∴可能的結(jié)果有:512,521,152,125,251,215;∴他第一次就撥通電話的概率是:故答案為.【題目點撥】考查概率的求法,明確概率的意義是解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的之比.18、1.【分析】根據(jù)關系式,令h=0即可求得t的值為飛行的時間.【題目詳解】解:依題意,令得:∴得:解得:(舍去)或∴即小球從飛出到落地所用的時間為故答案為1.【題目點撥】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應用.此題為數(shù)學建模題,關鍵在于讀懂小球從飛出到落地即飛行的高度為0時的情形,借助二次函數(shù)解決實際問題.此題較為簡單.三、解答題(共66分)19、(1)詳見解析;(2)當時,成立,理由詳見解析.【分析】(1)由旋轉(zhuǎn)的性質(zhì)得:,根據(jù)直角三角形斜邊中線的性質(zhì)可得OD=CF,OE=CF,進而可得OD=OE;(2)連接CE、DF,根據(jù)等腰三角形的性質(zhì)可得,利用角的和差關系可得,利用SAS可證明△ACE≌△AFD,可得CE=DF,∠ECA=∠DFA,利用角的和差關系可得,利用SAS可證明△EOC≌△DOF,即可證明OD=OE,可得(1)結(jié)論成立.【題目詳解】(1)∵四邊形ABCD是正方形,AC為對角線,∴∠BAC=45°,∵將繞點逆時針旋轉(zhuǎn)得,=45°,∴點E在AC上,∴,為的中點,∴同理:∴.(2)當時,成立,理由如下:連接,如圖所示:∵在正方形中,,AB=AE,∴,∵為的中點,∴,∵,∴,∵=45°,∴,∴,在和中,,∴,∴,∵,∴,∴,在和中,,∴,∴.【題目點撥】本題考查正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)及全等三角形的判定與性質(zhì),正確得出對應邊和對應角,熟練掌握全等三角形的判定定理是解題關鍵.20、(1)35°;(2)證明見解析.【分析】(1)由點E是△ABC的內(nèi)心,∠BAC=70°,易得∠CAD=,進而得出∠CBD=∠CAD=35°;(2)由點E是△ABC的內(nèi)心,可得E點為△ABC角平分線的交點,可得∠ABE=∠CBE,∠BAD=∠CAD,可推導出∠DBE=∠BED,可得DE=DB.【題目詳解】(1)∵點E是△ABC的內(nèi)心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是內(nèi)心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【題目點撥】此題考查了圓的內(nèi)心的性質(zhì)以及角平分線的性質(zhì)等知識.此題綜合性較強,注意數(shù)形結(jié)合思想的應用.21、(1)過D作DE⊥AM于E,△ADE即為所求;見解析;(2)AE=.【分析】(1)根據(jù)題意作出圖形即可;(2)先根據(jù)矩形的性質(zhì),得到AD∥BC,則∠DAE=∠AMB,又由∠DEA=∠B,根據(jù)有兩角對應相等的兩三角形相似,即可證明出△DAE∽△AMB,根據(jù)相似三角形的對應邊成比例,即可求出DE的長,根據(jù)勾股定理即可得到結(jié)論.【題目詳解】解:(1)過D作DE⊥AM于E,△ADE即為所求;(2)∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB,∴DE:AD=AB:AM,∵M是邊BC的中點,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=,∴AE===.【題目點撥】考核知識點:相似三角形判定和性質(zhì).根據(jù)相似三角形判定和性質(zhì)求出線段比,利用勾股定理進一步求解是關鍵.22、(1);;(2)的面積最大值是,此時點坐標為;(2)的最小值是2.【分析】(1)先寫出平移后的拋物線解析式,再把點代入可求得的值,由的面積為1可求出點的縱坐標,代入拋物線解析式可求出橫坐標,由、的坐標可利用待定系數(shù)法求出一次函數(shù)解析式;(2)作軸交于,如圖,利用三角形面積公式,由構(gòu)建關于E點橫坐標的二次函數(shù),然后利用二次函數(shù)的性質(zhì)即可解決問題;(2)作關于軸的對稱點,過點作于點,交軸于點,則,利用銳角三角函數(shù)的定義可得出,此時最小,求出最小值即可.【題目詳解】解:(1)將二次函數(shù)的圖象向右平移1個單位,再向下平移2個單位,得到的拋物線解析式為,∵,∴點的坐標為,代入拋物線的解析式得,,∴,∴拋物線的解析式為,即.令,解得,,∴,∴,∵的面積為1,∴,∴,代入拋物線解析式得,,解得,,∴,設直線的解析式為,∴,解得:,∴直線的解析式為.(2)過點作軸交于,如圖,設,則,∴,∴,,∴當時,的面積有最大值,最大值是,此時點坐標為.(2)作關于軸的對稱點,連接交軸于點,過點作于點,交軸于點,∵,,∴,,∴,∵,∴,∴,∵、關于軸對稱,∴,∴,此時最小,∵,,∴,∴.∴的最小值是2.【題目點撥】主要考查了二次函數(shù)的平移和待定系數(shù)法求函數(shù)的解析式、二次函數(shù)的性質(zhì)、相似三角形的判定與性質(zhì)、銳角三角函數(shù)的有關計算和利用對稱的性質(zhì)求最值問題.解(1)題的關鍵是熟練掌握待定系數(shù)法和相關點的坐標的求解;解(2)題的關鍵是靈活應用二次函數(shù)的性質(zhì)求解;解(2)題的關鍵是作關于軸的對稱點,靈活應用對稱的性質(zhì)和銳角三角函數(shù)的知識,學會利用數(shù)形結(jié)合的思想和轉(zhuǎn)化的數(shù)學思想把求的最小值轉(zhuǎn)化為求的長度.23、(1)y=x2﹣6x+5;(2)N(3,);(3)畫圖見解析,S△EMN=;(4)存在,滿足條件的點P的坐標為(3,﹣)或(7,)或(﹣1,).【分析】(1)先確定出點B坐標,最后用待定系數(shù)法即可得出結(jié)論;(2)先判斷出點N是直線BC與對稱軸的交點,即可得出結(jié)論;(3)先求出點E坐標,最后用三角形面積公式計算即可得出結(jié)論;(4)設出點P坐標,分三種情況利用用平行四邊形的兩條對角線互相平分和中點坐標公式求解即可得出結(jié)論.【題目詳解】解:(1)針對于直線y=﹣x+4,令y=0,則0=﹣x+4,∴x=5,∴B(5,0),∵M(3,﹣4)是拋物線的頂點,∴設拋物線的解析式為y=a(x﹣3)2﹣4,∵點B(5,0)在拋物線上,∴a(5﹣3)2﹣4=0,∴a=1,∴拋物線的解析式為y=(x﹣3)2﹣4=x2﹣6x+5;(2)由(1)知,拋物線的解析式為y=(x﹣3)2﹣4,∴拋物線的對稱軸為x=3,∵點A,B關于拋物線對稱軸對稱,∴直線y=﹣x+4與對稱軸x=3的交點就是滿足條件的點N,∴當x=3時,y=﹣×3+4=,∴N(3,);(3)∵點C是拋物線y=x2﹣6x+5與y軸的交點,∴C(0,5),∵點E與點C關于對稱軸x=3對稱,∴E(6,5),由(2)知,N(3,),∵M(3,﹣4),∴MN=﹣(﹣4)=,∴S△EMN=MN?|xE﹣xM|=××3=;(4)設P(m,n),∵A(1,0),B(5,0),N(3,),當AB為對角線時,AB與NP互相平分,∴(1+5)=(3+m),(0+0)=(+n),∴m=3,n=﹣,∴P(3,﹣);當BN為對角線時,(1+m)=((3+5),(0+n)=(0+),∴m=7,n=,∴P(7,);當AN為對角線時,(1+3)=(5+m),(0+)=(0+n),∴m=﹣1,n=,∴P(﹣1,),即:滿足條件的點P的坐標為(3,﹣)或(7,)或(﹣1,).【題目點撥】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形面積公式,對稱性,平行四邊形的性質(zhì),用方程的思想解決
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇海事職業(yè)技術學院《茶葉審評與檢驗實驗》2023-2024學年第一學期期末試卷
- 華南理工大學《金蝶云ERP供應鏈管理》2023-2024學年第一學期期末試卷
- 湖北交通職業(yè)技術學院《地質(zhì)與地貌學》2023-2024學年第一學期期末試卷
- 遵義職業(yè)技術學院《工程軟件與程序設計》2023-2024學年第一學期期末試卷
- 珠海藝術職業(yè)學院《建筑師業(yè)務基礎與實踐》2023-2024學年第一學期期末試卷
- 重慶青年職業(yè)技術學院《攝影報道》2023-2024學年第一學期期末試卷
- 浙江同濟科技職業(yè)學院《舞臺表演化妝與發(fā)型》2023-2024學年第一學期期末試卷
- 重慶安全技術職業(yè)學院《模擬電子技術實驗B》2023-2024學年第一學期期末試卷
- 中南財經(jīng)政法大學《融媒體與節(jié)目策劃》2023-2024學年第一學期期末試卷
- 鄭州亞歐交通職業(yè)學院《裝配式建筑識圖與實務》2023-2024學年第一學期期末試卷
- 軟件項目應急措施及方案
- 2025河北邯鄲經(jīng)開國控資產(chǎn)運營管理限公司招聘專業(yè)技術人才5名高頻重點提升(共500題)附帶答案詳解
- 2024年民法典知識競賽考試題庫及答案(共50題)
- 2025老年公寓合同管理制度
- 鈑金設備操作培訓
- 水利工程招標文件樣本
- 第17課 西晉的短暫統(tǒng)一和北方各族的內(nèi)遷(說課稿)-2024-2025學年七年級歷史上冊素養(yǎng)提升說課稿(統(tǒng)編版2024)
- 共生理論視域下開放型區(qū)域產(chǎn)教融合實踐中心建設路徑研究
- 2024-2025學年人教版七年級上冊數(shù)學期末專項復習:期末考試必刷易錯60題(解析版)
- 2025屆河南省九師聯(lián)盟高一物理第一學期期末監(jiān)測模擬試題含解析
- 中國新茶飲行業(yè)政策、市場規(guī)模及投資前景研究報告(智研咨詢發(fā)布)
評論
0/150
提交評論