2024屆吉林省磐石市吉昌中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆吉林省磐石市吉昌中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆吉林省磐石市吉昌中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆吉林省磐石市吉昌中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆吉林省磐石市吉昌中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆吉林省磐石市吉昌中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在△中,,,垂足為,若,,則的值為()A. B.C. D.2.在平面直角坐標(biāo)系中,以點(3,2)為圓心、2為半徑的圓,一定()A.與x軸相切,與y軸相切 B.與x軸相切,與y軸相離C.與x軸相離,與y軸相切 D.與x軸相離,與y軸相離3.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次4.如圖所示,某公園設(shè)計節(jié)日鮮花擺放方案,其中一個花壇由一批花盆堆成六角垛,頂層一個,以下各層堆成六邊形,逐層每邊增加一個花盆,則第七層的花盆的個數(shù)是()A.91 B.126 C.127 D.1695.如圖是成都市某周內(nèi)日最高氣溫的折線統(tǒng)計圖,關(guān)于這7天的日最高氣溫的說法正確的是()A.極差是8℃ B.眾數(shù)是28℃ C.中位數(shù)是24℃ D.平均數(shù)是26℃6.拋物線y=x2+bx+c(其中b,c是常數(shù))過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,則c的值不可能是()A.4 B.6 C.8 D.107.點關(guān)于原點的對稱點是A. B. C. D.8.如圖,線段與相交于點,連接,且,要使,應(yīng)添加一個條件,不能證明的是()A. B. C. D.9.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm10.一個群里共有個好友,每個好友都分別給群里的其他好友發(fā)一條信息,共發(fā)信息1980條,則可列方程()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,已知正方形OABC的三個頂點坐標(biāo)分別為A(2,0),B(2,2),C(0,2),若反比例函數(shù)的圖象與正方形OABC的邊有交點,請寫出一個符合條件的k值__________.12.函數(shù)中,自變量的取值范圍是_____.13.如圖是二次函數(shù)y=ax2+bx+c的部分圖象,由圖象可知方程ax2+bx+c=0的解是_________.14.二次函數(shù)圖象的開口向__________.15.方程的根是__________.16.如圖,在扇形OAB中,∠AOB=90°,半徑OA=1.將扇形OAB沿過點B的直線折疊.點O恰好落在延長線上點D處,折痕交OA于點C,整個陰影部分的面積_____.17.如圖,在△ABC中,D、E分別是AB、AC上的點,且DE∥BC,若AD:AB=4:9,則S△ADE:S△ABC=.18.如圖,是的直徑,,弦,的平分線交于點,連接,則陰影部分的面積是________.(結(jié)果保留)三、解答題(共66分)19.(10分)(1)(問題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;(3)(問題發(fā)現(xiàn))當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.20.(6分)如圖,已知一次函數(shù)y=x﹣2與反比例函數(shù)y=的圖象交于A、B兩點.(1)求A、B兩點的坐標(biāo);(2)求△AOB的面積.21.(6分)已知二次函數(shù)y=ax2+bx﹣16的圖象經(jīng)過點(﹣2,﹣40)和點(6,8).(1)求這個二次函數(shù)圖象與x軸的交點坐標(biāo);(2)當(dāng)y>0時,直接寫出自變量x的取值范圍.22.(8分)在同一平面內(nèi),將兩個全等的等腰直角三角形和擺放在一起,為公共頂點,,若固定不動,繞點旋轉(zhuǎn),、與邊的交點分別為、(點不與點重合,點不與點重合).(1)求證:;(2)在旋轉(zhuǎn)過程中,試判斷等式是否始終成立,若成立,請證明;若不成立,請說明理由.23.(8分)如圖示,在平面直角坐標(biāo)系中,二次函數(shù)()交軸于,,在軸上有一點,連接.(1)求二次函數(shù)的表達式;(2)點是第二象限內(nèi)的點拋物線上一動點①求面積最大值并寫出此時點的坐標(biāo);②若,求此時點坐標(biāo);(3)連接,點是線段上的動點.連接,把線段繞著點順時針旋轉(zhuǎn)至,點是點的對應(yīng)點.當(dāng)動點從點運動到點,則動點所經(jīng)過的路徑長等于______(直接寫出答案)24.(8分)定義:如果一個三角形中有兩個內(nèi)角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點E(異于點D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點D為AC邊上一點,以BD為直徑的圓交BC于點E,連結(jié)AE交BD于點F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.25.(10分)如圖,△ABC中∠A=60°,∠B=40°,點D、E分別在△ABC的邊AB、AC上,且∠ADE=80°.(1)求證:△AED∽△ABC;(2)若AD=4,AB=8,AE=5,求CE的長.26.(10分)某數(shù)學(xué)小組在郊外的水平空地上對無人機進行測高實驗.如圖,兩臺測角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺測角儀相距50米(即AB=50米).在某一時刻無人機位于點C(點C與點A、B在同一平面內(nèi)),A處測得其仰角為,B處測得其仰角為.(參考數(shù)據(jù):,,,,)(1)求該時刻無人機的離地高度;(單位:米,結(jié)果保留整數(shù))(2)無人機沿水平方向向左飛行2秒后到達點F(點F與點A、B、C在同一平面內(nèi)),此時于A處測得無人機的仰角為,求無人機水平飛行的平均速度.(單位:米/秒,結(jié)果保留整數(shù))

參考答案一、選擇題(每小題3分,共30分)1、D【分析】在△中,根據(jù)勾股定理可得,而∠B=∠ACD,即可把求轉(zhuǎn)化為求.【題目詳解】在△中,根據(jù)勾股定理可得:∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴=.故選D.【題目點撥】本題考查了了解直角三角形中三角函數(shù)的應(yīng)用,要熟練掌握好邊角之間的關(guān)系,難度適中.2、B【分析】本題應(yīng)將該點的橫縱坐標(biāo)分別與半徑對比,大于半徑時,則坐標(biāo)軸與該圓相離;若等于半徑時,則坐標(biāo)軸與該圓相切.【題目詳解】∵是以點(2,3)為圓心,2為半徑的圓,則有2=2,3>2,∴這個圓與x軸相切,與y軸相離.故選B.【題目點撥】本題考查了直線與圓的位置關(guān)系、坐標(biāo)與圖形性質(zhì).直線與圓相切,直線到圓的距離等于半徑;與圓相離,直線到圓的距離大于半徑.3、A【解題分析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.4、C【分析】由圖形可知:第一層有1個花盆,第二層有1+6=7個花盆,第三層有1+6+12=19個花盆,第四層有1+6+12+18=37個花盆,…第n層有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)個花盆,要求第7層個數(shù),由此代入求得答案即可.【題目詳解】解:∵第一層有1個花盆,

第二層有1+6=7個花盆,

第三層有1+6+12=19個花盆,

第四層有1+6+12+18=37個花盆,

∴第n層有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)個花盆,

∴當(dāng)n=7時,

∴花盆的個數(shù)是1+3×7×(7-1)=1.

故選:C.【題目點撥】此題考查圖形的變化規(guī)律,解題關(guān)鍵在于找出數(shù)字之間的運算規(guī)律,利用規(guī)律解決問題.5、B【解題分析】分析:根據(jù)折線統(tǒng)計圖中的數(shù)據(jù)可以判斷各個選項中的數(shù)據(jù)是否正確,從而可以解答本題.詳解:由圖可得,極差是:30-20=10℃,故選項A錯誤,眾數(shù)是28℃,故選項B正確,這組數(shù)按照從小到大排列是:20、22、24、26、28、28、30,故中位數(shù)是26℃,故選項C錯誤,平均數(shù)是:℃,故選項D錯誤,故選B.點睛:本題考查折線統(tǒng)計圖、極差、眾數(shù)、中位數(shù)、平均數(shù),解答本題的關(guān)鍵是明確題意,能夠判斷各個選項中結(jié)論是否正確.6、A【解題分析】試題分析:根據(jù)拋物線y=x2+bx+c(其中b,c是常數(shù))過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,可以得到c的取值范圍,從而可以解答本題.∵拋物線y=x2+bx+c(其中b,c是常數(shù))過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,∴解得6≤c≤14考點:二次函數(shù)的性質(zhì)7、C【解題分析】解:點P(4,﹣3)關(guān)于原點的對稱點是(﹣4,3).故選C.【題目點撥】本題考查關(guān)于原點對稱的點的坐標(biāo),兩個點關(guān)于原點對稱時,兩個點的橫、縱坐標(biāo)符號相反,即P(x,y)關(guān)于原點O的對稱點是P′(﹣x,﹣y).8、D【分析】根據(jù)三角形全等的判定定理逐項判斷即可.【題目詳解】A、在和中,則,此項不符題意B、在和中,則,此項不符題意C、在和中,則,此項不符題意D、在和中,,但兩組相等的對應(yīng)邊的夾角和未必相等,則不能證明,此項符合題意故選:D.【題目點撥】本題考查了三角形全等的判定定理,熟記各定理是解題關(guān)鍵.9、B【解題分析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.10、B【分析】每個好友都有一次發(fā)給QQ群其他好友消息的機會,即每兩個好友之間要互發(fā)一次消息;設(shè)有x個好友,每人發(fā)(x-1)條消息,則發(fā)消息共有x(x-1)條,再根據(jù)共發(fā)信息1980條,列出方程x(x-1)=1980.【題目詳解】解:設(shè)有x個好友,依題意,得:x(x-1)=1980.故選:B.【題目點撥】本題考查了一元二次方程的應(yīng)用,根據(jù)題意設(shè)出合適的未知數(shù),再根據(jù)等量關(guān)系式列出方程是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、1(滿足條件的k值的范圍是0<k≤4)【分析】反比例函數(shù)上一點向x、y軸分別作垂線,分別交于y軸和x軸,則圍成的矩形的面積為|k|,據(jù)此進一步求解即可.【題目詳解】∵反比例函數(shù)圖像與正方形有交點,∴當(dāng)交于B點時,此時圍成的矩形面積最大且為4,∴|k|最大為4,∵在第一象限,∴k為正數(shù),即0<k≤4,∴k的取值可以為:1.故答案為:1(滿足條件的k值的范圍是0<k≤4).【題目點撥】本題主要考查了反比例函數(shù)中比例系數(shù)的相關(guān)運用,熟練掌握相關(guān)概念是解題關(guān)鍵.12、【分析】根據(jù)被開方式是非負數(shù)列式求解即可.【題目詳解】依題意,得,解得:,故答案為.【題目點撥】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當(dāng)函數(shù)解析式是整式時,字母可取全體實數(shù);②當(dāng)函數(shù)解析式是分式時,考慮分式的分母不能為0;③當(dāng)函數(shù)解析式是二次根式時,被開方數(shù)為非負數(shù).④對于實際問題中的函數(shù)關(guān)系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.13、,【題目詳解】解:由圖象可知對稱軸x=2,與x軸的一個交點橫坐標(biāo)是5,它到直線x=2的距離是3個單位長度,所以另外一個交點橫坐標(biāo)是-1.

所以,.

故答案是:,.【題目點撥】考查拋物線與x軸的交點,拋物線與x軸兩個交點的橫坐標(biāo)的和除以2后等于對稱軸.14、下【分析】根據(jù)二次函數(shù)的二次項系數(shù)即可判斷拋物線的開口方向.【題目詳解】解:∵,二次項系數(shù)a=-6,∴拋物線開口向下,故答案為:下.【題目點撥】本題考查二次函數(shù)的性質(zhì).對于二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)a>0時,拋物線開口向上,當(dāng)a<0時,拋物線開口向下.15、【分析】由題意根據(jù)直接開平方法的步驟求出x的解即可.【題目詳解】解:∵,∴x=±2,∴.故答案為:.【題目點撥】本題考查解一元二次方程-直接開平方法,根據(jù)法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負,分開求得方程解”來求解.16、9π﹣12.【題目詳解】解:連接OD交BC于點E,∠AOB=90°,∴扇形的面積==9π,由翻折的性質(zhì)可知:OE=DE=3,在Rt△OBE中,根據(jù)特殊銳角三角函數(shù)值可知∠OBC=30°,在Rt△COB中,CO=2,∴△COB的面積=1,∴陰影部分的面積為=9π﹣12.故答案為9π﹣12.【題目點撥】本題考查翻折變換(折疊問題)及扇形面積的計算,掌握圖形之間的面積關(guān)系是本題的解題關(guān)鍵.17、16:1【分析】由DE∥BC,證出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【題目詳解】∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案為16:1.18、【分析】連接OD,求得AB的長度,可以推知OA和OD的長度,然后由角平分線的性質(zhì)求得∠AOD=90°;最后由扇形的面積公式、三角形的面積公式可以求得,陰影部分的面積=.【題目詳解】解:連接,∵為的直徑,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴陰影部分的面積.故答案為:.【題目點撥】本題綜合考查了圓周角定理、含30度角的直角三角形以及扇形面積公式.三、解答題(共66分)19、(1)BE=AF;(2)無變化;(3)﹣1或+1.【解題分析】(1)先利用等腰直角三角形的性質(zhì)得出AD=,再得出BE=AB=2,即可得出結(jié)論;(2)先利用三角函數(shù)得出,同理得出,夾角相等即可得出△ACF∽△BCE,進而得出結(jié)論;(3)分兩種情況計算,當(dāng)點E在線段BF上時,如圖2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的結(jié)論,當(dāng)點E在線段BF的延長線上,同前一種情況一樣即可得出結(jié)論.【題目詳解】解:(1)在Rt△ABC中,AB=AC=2,根據(jù)勾股定理得,BC=AB=2,點D為BC的中點,∴AD=BC=,∵四邊形CDEF是正方形,∴AF=EF=AD=,∵BE=AB=2,∴BE=AF,故答案為BE=AF;(2)無變化;如圖2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,∴線段BE與AF的數(shù)量關(guān)系無變化;(3)當(dāng)點E在線段AF上時,如圖2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,當(dāng)點E在線段BF的延長線上時,如圖3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF+EF=+,由(2)知,BE=AF,∴AF=+1.即:當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,線段AF的長為﹣1或+1.20、(1)A的坐標(biāo)是(3,1),B的坐標(biāo)是(﹣1,﹣3);(2)1【分析】(1)求出兩函數(shù)解析式組成的方程組的解即可;(2)先求出函數(shù)y=x﹣2與y軸的交點的坐標(biāo),再根據(jù)三角形的面積公式求出面積即可.【題目詳解】解:(1)解方程組,解得:,,即A的坐標(biāo)是(3,1),B的坐標(biāo)是(﹣1,﹣3);(2)設(shè)函數(shù)y=x﹣2與y軸的交點是C,當(dāng)x=0時,y=﹣2,即OC=2,∵A的坐標(biāo)是(3,1),B的坐標(biāo)是(﹣1,﹣3),∴△AOB的面積S=S△AOC+S△BOC==1.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,解方程組等知識點,能求出A、B、C的坐標(biāo)是解此題的關(guān)鍵.21、(1)交點坐標(biāo)為(2,0)和(1,0);(2)2<x<1【分析】(1)把點(﹣2,﹣40)和點(6,1)代入二次函數(shù)解析式得到關(guān)于a和b的方程組,解方程組求得a和b的值,可確定出二次函數(shù)解析式,令y=0,解方程即可;(2)當(dāng)y>0時,即二次函數(shù)圖象在x軸上方的部分對應(yīng)的x的取值范圍,據(jù)此即可得結(jié)論.【題目詳解】(1)由題意,把點(﹣2,﹣40)和點(6,1)代入二次函數(shù)解析式,得,解得:,所以這個二次函數(shù)的解析式為:,當(dāng)y=0時,,解之得:,∴這個二次函數(shù)圖象與x軸的交點坐標(biāo)為(2,0)和(1,0);(2)當(dāng)y>0時,直接寫出自變量x的取值范圍是2<x<1.【題目點撥】本題考查待定系數(shù)法求解析式、二次函數(shù)圖象與x軸的交點,解題的關(guān)鍵是熟練掌握待定系數(shù)法求解析式.22、(1)詳見解析;(1)成立.【分析】(1)由圖形得∠BAE=∠BAD+45°,由外角定理,得∠CDA=∠BAD+45°,可得∠BAE=∠CDA,根據(jù)∠B=∠C=45°,證明兩個三角形相似;

(1)將△ACE繞點A順時針旋轉(zhuǎn)90°至△ABH位置,證明△EAD≌△HAD轉(zhuǎn)化DE、EC,使所求線段集中在Rt△BHD中利用勾股定理解決.【題目詳解】(1)∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,

∴∠BAE=∠CDA,

又∠B=∠C=45°,

∴△ABE∽△DCA;

(1)成立.如圖,將△ACE繞點A順時針旋轉(zhuǎn)90°至△ABH位置,

則CE=BH,AE=AH,∠ABH=∠C=45°,旋轉(zhuǎn)角∠EAH=90°.

連接HD,在△EAD和△HAD中,

∴△EAD≌△HAD(SAS).

∴DH=DE.

又∠HBD=∠ABH+∠ABD=90°,

∴BD1+BH1=HD1,即BD1+CE1=DE1.【題目點撥】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確作出輔助線.23、(1);(2)①,點坐標(biāo)為;②;(3)【分析】(1)根據(jù)點坐標(biāo)代入解析式即可得解;(2)①由A、E兩點坐標(biāo)得出直線AE解析式,設(shè)點坐標(biāo)為,過點作軸交于點,則坐標(biāo)為,然后構(gòu)建面積與t的二次函數(shù),即可得出面積最大值和點D的坐標(biāo);②過點作,在中,由,,得出點M的坐標(biāo),進而得出直線ME的解析式,聯(lián)立直線ME和二次函數(shù),即可得出此時點D的坐標(biāo);(3)根據(jù)題意,當(dāng)點P在點C時,Q點坐標(biāo)為(-6,6),當(dāng)點P移動到點A時,Q′點坐標(biāo)為(-4,-4),動點所經(jīng)過的路徑是直線QQ′,求出兩點之間的距離即可得解.【題目詳解】(1)依題意得:,解得∴(2)①∵,∴設(shè)直線AE為將A、E代入,得∴∴直線設(shè)點坐標(biāo)為,其中過點作軸交于點,則坐標(biāo)為∴∴即:由函數(shù)知識可知,當(dāng)時,,點坐標(biāo)為②設(shè)與相交于點過點作,垂足為在中,,,設(shè),則,∴∴∴∴∴∴∴∴(舍去),當(dāng)時,∴(3)當(dāng)點P在點C時,Q點坐標(biāo)為(-6,6),當(dāng)點P移動到點A時,Q′點坐標(biāo)為(-4,-4),如圖所示:∴動點所經(jīng)過的路徑是直線QQ′,∴故答案為.【題目點撥】此題主要考查二次函數(shù)以及動點綜合問題,解題關(guān)鍵是找出合適的坐標(biāo),即可解題.24、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當(dāng)∠ABD=∠DBC=β時,設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如圖3所示,當(dāng)∠ABD=∠C=β時,AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【題目詳解】解:(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°,故答案為20;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在邊AC上是否存在點E(異于點D),使得△BCE是“近直角三角形”,AB=3,AC=1,則BC=5,則∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,則CE=1﹣=;(3)①如圖2所示,當(dāng)∠ABD=∠DBC=β時,則AE⊥BF,則AF=FE=3,則AE=6,AB=BE=5,過點A作AH⊥BC于點H,設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論