2024屆德州陵城區(qū)五校聯(lián)考九年級數(shù)學第一學期期末復習檢測試題含解析_第1頁
2024屆德州陵城區(qū)五校聯(lián)考九年級數(shù)學第一學期期末復習檢測試題含解析_第2頁
2024屆德州陵城區(qū)五校聯(lián)考九年級數(shù)學第一學期期末復習檢測試題含解析_第3頁
2024屆德州陵城區(qū)五校聯(lián)考九年級數(shù)學第一學期期末復習檢測試題含解析_第4頁
2024屆德州陵城區(qū)五校聯(lián)考九年級數(shù)學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆德州陵城區(qū)五校聯(lián)考九年級數(shù)學第一學期期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖象的頂點坐標為()A. B. C. D.2.一個半徑為2cm的圓的內(nèi)接正六邊形的面積是()A.24cm2 B.6cm2 C.12cm2 D.8cm23.在△ABC中,D是AB中點,E是AC中點,若△ADE的面積是3,則△ABC的面積是()A.3 B.6 C.9 D.124.如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點P(1,3),則關于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.如圖所示,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=110°,則α等于()A.20° B.30° C.40° D.50°6.在Rt△ABC中,∠C=900,∠B=2∠A,則cosB等于()A. B. C. D.7.如圖,在△ABC中,∠A=75°,AB=6,AC=8,將△ABC沿圖中的虛線剪開,剪下的陰影三角形與原三角形不相似的是()A. B. C. D.8.如圖,以AB為直徑,點O為圓心的半圓經(jīng)過點C,若AC=BC=,則圖中陰影部分的面積是()A. B. C. D.9.在平面直角坐標系xOy中,經(jīng)過點(sin45°,cos30°)的直線,與以原點為圓心,2為半徑的圓的位置關系是()A.相交 B.相切C.相離 D.以上三者都有可能10.如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是拋物線上兩點,則y1=y(tǒng)2;④4a+2b+c<0,其中說法正確的()A.①② B.①②③ C.①②④ D.②③④11.如果關于x的分式方程有負分數(shù)解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是()A.-3 B.0 C.3 D.912.如圖,直線,等腰的直角頂點在上,頂點在上,若,則()A.31° B.45° C.30° D.59°二、填空題(每題4分,共24分)13.如圖,O是正方形ABCD邊上一點,以O為圓心,OB為半徑畫圓與AD交于點E,過點E作⊙O的切線交CD于F,將△DEF沿EF對折,點D的對稱點D'恰好落在⊙O上.若AB=6,則OB的長為_____.14.如圖,直線分別交軸,軸于點A和點B,點C是反比例函數(shù)的圖象上位于直線下方的一點,CD∥軸交AB于點D,CE∥軸交AB于點E,,則的值為______15.寫出一個二次函數(shù)關系式,使其圖象開口向上_______.16.有三張正面分別寫有數(shù)字﹣1,1,2的卡片,它們背面完全相同,現(xiàn)將這三張卡片背面朝上洗勻后隨即抽取一張,以其正面數(shù)字作為a的值,然后再從剩余的兩張卡片隨機抽一張,以其正面的數(shù)字作為b的值,則點(a,b)在第二象限的概率為_____.17.將一些相同的圓點按如圖所示的規(guī)律擺放:第1個圖形有3個圓點,第2個形有7個圓點,第3個圖形有13個圓點,第4個圖形有21個圓點,則第20個圖形有_____個圓點.18.如圖,一次函數(shù)=與反比例函數(shù)=(>0)的圖像在第一象限交于點A,點C在以B(7,0)為圓心,2為半徑的⊙B上,已知AC長的最大值為,則該反比例函數(shù)的函數(shù)表達式為__________________________.三、解答題(共78分)19.(8分)四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.(1)求隨機抽取一張卡片,恰好得到數(shù)字2的概率;(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認為這個游戲公平嗎?請用列表法或畫樹狀圖法說明理由,若認為不公平,請你修改規(guī)則,使游戲變得公平.20.(8分)解方程:(1)x2-8x+6=0(2)x123x1021.(8分)如圖,在中,,,,將線段繞點按逆時針方向旋轉(zhuǎn)到線段.由沿方向平移得到,且直線過點.(1)求的大??;(2)求的長.22.(10分)用適當?shù)姆椒ń庀铝蟹匠蹋海?)(2)23.(10分)(1)如圖1,在⊙O中,弦AB與CD相交于點F,∠BCD=68°,∠CFA=108°,求∠ADC的度數(shù).(2)如圖2,在正方形ABCD中,點E是CD上一點(DE>CE),連接AE,并過點E作AE的垂線交BC于點F,若AB=9,BF=7,求DE長.24.(10分)如圖,頂點為P(2,﹣4)的二次函數(shù)y=ax2+bx+c的圖象經(jīng)過原點,點A(m,n)在該函數(shù)圖象上,連接AP、OP.(1)求二次函數(shù)y=ax2+bx+c的表達式;(2)若∠APO=90°,求點A的坐標;(3)若點A關于拋物線的對稱軸的對稱點為C,點A關于y軸的對稱點為D,設拋物線與x軸的另一交點為B,請解答下列問題:①當m≠4時,試判斷四邊形OBCD的形狀并說明理由;②當n<0時,若四邊形OBCD的面積為12,求點A的坐標.25.(12分)如圖,中,,是的中點,于.(1)求證:;(2)當時,求的度數(shù).26.某校組織學生參加“安全知識競賽”(滿分為分),測試結(jié)束后,張老師從七年級名學生中隨機地抽取部分學生的成績繪制了條形統(tǒng)計圖,如圖所示.試根據(jù)統(tǒng)計圖提供的信息,回答下列問題:(1)張老師抽取的這部分學生中,共有名男生,名女生;(2)張老師抽取的這部分學生中,女生成績的眾數(shù)是;(3)若將不低于分的成績定為優(yōu)秀,請估計七年級名學生中成績?yōu)閮?yōu)秀的學生人數(shù)大約是多少.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)二次函數(shù)頂點式的性質(zhì)即可得答案.【題目詳解】∵是二次函數(shù)的頂點式,∴頂點坐標為(0,-1),故選:B.【題目點撥】本題考查二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)的三種形式是解題關鍵.2、B【解題分析】設O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則△OAB是正三角形,△OAB的面積的六倍就是正六邊形的面積解:如圖所示:設O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則∠AOB=60°,OA=OB=2cm,∴△OAB是正三角形,∴AB=OA=2cm,OC=OA?sin∠A=2×=(cm),∴S△OAB=AB?OC=×2×=(cm2),∴正六邊形的面積=6×=6(cm2).故選B.3、D【分析】根據(jù)相似三角形的性質(zhì)與判定即可求出答案.【題目詳解】解:∵D是AB中點,E是AC中點,∴DE是△ABC的中位線,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故選:D.【題目點撥】本題考查了相似三角形的面積問題,掌握相似三角形的性質(zhì)與判定是解題的關鍵.4、C【解題分析】試題分析:當x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數(shù)與一元一次不等式.5、A【解題分析】由性質(zhì)性質(zhì)得,∠D′=∠D=90°,∠4=α,由四邊形內(nèi)角和性質(zhì)得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【題目詳解】如圖,因為四邊形ABCD為矩形,所以∠B=∠D=∠BAD=90°,因為矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因為∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故選:A【題目點撥】本題考核知識點:旋轉(zhuǎn)角.解題關鍵點:理解旋轉(zhuǎn)的性質(zhì).6、B【題目詳解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故選B【題目點撥】本題考查三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.7、D【分析】根據(jù)相似三角形的判定定理對各選項進行逐一判定即可.【題目詳解】A、根據(jù)平行線截得的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形對應邊成比例且夾角相等,故兩三角形相似,故本選項錯誤.D、兩三角形的對應邊不成比例,故兩三角形不相似,故本選項正確;故選:D.【題目點撥】本題考查了相似三角形的判定,熟練掌握相似三角形的判定定理是解題的關鍵.8、A【分析】先利用圓周角定理得到∠ACB=90°,則可判斷△ACB為等腰直角三角形,接著判斷△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根據(jù)扇形的面積公式計算圖中陰影部分的面積.【題目詳解】∵AB為直徑,∴∠ACB=90°,∵AC=BC=,∴△ACB為等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S陰影部分=S扇形AOC=.故選A.【題目點撥】本題考查了扇形面積的計算:圓面積公式:S=πr2,(2)扇形:由組成圓心角的兩條半徑和圓心角所對的弧所圍成的圖形叫做扇形.求陰影面積常用的方法:①直接用公式法;②和差法;③割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.9、A【解題分析】試題分析:本題考查了直線和圓的位置關系,用到的知識點有特殊角的銳角三角函數(shù)值、勾股定理的運用,判定點A和圓的位置關系是解題關鍵.設直線經(jīng)過的點為A,若點A在圓內(nèi)則直線和圓一定相交;若點在圓上或圓外則直線和圓有可能相交或相切或相離,所以先要計算OA的長和半徑2比較大小再做選擇.設直線經(jīng)過的點為A,∵點A的坐標為(sin45°,cos30°),∴OA==,∵圓的半徑為2,∴OA<2,∴點A在圓內(nèi),∴直線和圓一定相交.故選A.考點:1.直線與圓的位置關系;2.坐標與圖形性質(zhì);3.特殊角的三角函數(shù)值.10、B【分析】根據(jù)題意和函數(shù)圖象,利用二次函數(shù)的性質(zhì)可以判斷各個小題中的結(jié)論是否正確,從而可以解答本題.【題目詳解】由圖象可得,,,,則,故①正確;∵該函數(shù)的對稱軸是,∴,得,故②正確;∵,,∴若(﹣5,y1),(3,y2)是拋物線上兩點,則,故③正確;∵該函數(shù)的對稱軸是,過點(﹣3,0),∴和時的函數(shù)值相等,都大于0,∴,故④錯誤;故正確是①②③,故選:B.【題目點撥】本題考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的圖像和性質(zhì)是解題的關鍵.11、D【解題分析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數(shù)a取值為﹣3;﹣1;1;3,之積為1.故選D.12、A【分析】過點B作BD//l1,,再由平行線的性質(zhì)即可得出結(jié)論.【題目詳解】解:過點B作BD//l1,則∠α=∠CBD.

∵,

∴BD//,

∴∠β=∠DBA,

∵∠CBD+∠DBA=45°,

∴∠α+∠β=45°,∵∴∠α=45°-∠β=31°.

故選A.【題目點撥】本題考查的是平行線的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關鍵.二、填空題(每題4分,共24分)13、【解題分析】連接OE、OD′,作OH⊥ED′于H,通過證得AEO≌△HEO(AAS),AE=EH=ED=2,設OB=OE=x.則AO=6﹣x,根據(jù)勾股定理得x2=22+(6﹣x)2,解方程即可求得結(jié)論.【題目詳解】解:連接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四邊形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切線,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴設OB=OE=x.則AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案為:.【題目點撥】本題是圓的綜合題目,考查了切線的性質(zhì)和判定、正方形的性質(zhì)、勾股定理,方程,全等三角形的判定與性質(zhì)等知識;本題主要考查了圓的切線及全等三角形的判定和性質(zhì),關鍵是作出輔助線利用三角形全等證明.14、【分析】過作于,過作于,由CD∥軸,CE∥軸,得利用三角形相似的性質(zhì)求解建立方程求解,結(jié)合的幾何意義可得答案.【題目詳解】.解:過作于,過作于,CD∥軸,CE∥軸,直線分別交軸,軸于點A和點B,點,把代入得:同理:把代入得:,同理:故答案為;.【題目點撥】本題考查的是反比例函數(shù)的系數(shù)的幾何意義,同時考查了一次函數(shù)的性質(zhì),勾股定理的應用,相似三角形的判定與性質(zhì),掌握以上知識是解題的關鍵.15、【分析】拋物線開口向上,則二次函數(shù)解析式的二次項系數(shù)為正數(shù),據(jù)此寫二次函數(shù)解析式即可.【題目詳解】∵圖象開口向上,∴二次項系數(shù)大于零,∴可以是:(答案不唯一).故答案為:.【題目點撥】本題考察了二次函數(shù)的圖象和性質(zhì),對于二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0),當a>0時,拋物線開口向上;當a<0時,拋物線開口向下.16、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果以及點(a,b)在第二象限的情況,再利用概率公式即可求得答案.【題目詳解】解:畫樹狀圖圖得:∵共有6種等可能的結(jié)果,點(a,b)在第二象限的有2種情況,∴點(a,b)在第二象限的概率為:.故答案為:.【題目點撥】本題考查的是利用公式計算某個事件發(fā)生的概率,注意找全所有可能出現(xiàn)的結(jié)果數(shù)作分母.在判斷某個事件A可能出現(xiàn)的結(jié)果數(shù)時,要注意審查關于事件A的說法,避免多數(shù)或少數(shù).17、1【分析】觀察圖形可知,每個圖形中圓點的個數(shù)為序號數(shù)的平方加上序號數(shù)+1,依此可求第n個圖有多少個圓點.【題目詳解】解:由圖形可知,第1個圖形有12+1+1=3個圓點;第2個圖形有22+2+1=7個圓點;第3個圖形有32+3+1=13個圓點;第4個圖形有42+4+1=21個圓點;…則第n個圖有(n2+n+1)個圓點;所以第20個圖形有202+20+1=1個圓點.故答案為:1.【題目點撥】此題考查圖形的變化規(guī)律,找出圖形之間的聯(lián)系,找出規(guī)律是解決問題的關鍵.18、或【解題分析】過A作AD垂直于x軸,設A點坐標為(m,n),則根據(jù)A在y=x上得m=n,由AC長的最大值為,可知AC過圓心B交⊙B于C,進而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根據(jù)勾股定理列方程即可求出m的值,進而可得A點坐標,即可求出該反比例函數(shù)的表達式.【題目詳解】過A作AD垂直于x軸,設A點坐標為(m,n),∵A在直線y=x上,∴m=n,∵AC長的最大值為,∴AC過圓心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A點在反比例函數(shù)=(>0)的圖像上,∴當m=3時,k=9;當m=4時,k=16,∴該反比例函數(shù)的表達式為:或,故答案為或【題目點撥】本題考查一次函數(shù)與反比例函數(shù)的性質(zhì),理解題意找出AC的最長值是通過圓心的直線是解題關鍵.三、解答題(共78分)19、解:(1)P(抽到2)=.(2)不公平,修改規(guī)則見解析【題目詳解】解:(1)P(抽到2)=.(2)根據(jù)題意可列表2236222222326222222326332323336662626366從表(或樹狀圖)中可以看出所有可能結(jié)果共有16種,符合條件的有10種,∴P(兩位數(shù)不超過32)=.∴游戲不公平.調(diào)整規(guī)則:法一:將游戲規(guī)則中的32換成26~31(包括26和31)之間的任何一個數(shù)都能使游戲公平.法二:游戲規(guī)則改為:抽到的兩位數(shù)不超過32的得3分,抽到的兩位數(shù)不超過32的得5分;能使游戲公平法三:游戲規(guī)則改為:組成的兩位數(shù)中,若個位數(shù)字是2,小貝勝,反之小晶勝.20、(1)x1=,x2=-(2)x1=1,x2=1.【分析】(1)根據(jù)配方法即可求解;(2)根據(jù)因式分解法即可求解.【題目詳解】(1)x2-8x+6=0x2-8x+16=10(x-1)2=10x-1=±∴x1=,x2=-(2)x123x10x1x1-3x1x-1∴x-1=0或x-1=0解得x1=1,x2=1.【題目點撥】此題主要考查一元二次方程的求解,解題的關鍵是熟知其解法的運用.21、(1);(2)【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可求得,AD=AB=10,∠ABD=45°,再由平移的性質(zhì)即可得出結(jié)論;(2)根據(jù)平移的性質(zhì)及同角的余角相等證得∠DAE=∠CAB,進而證得△ADE∽△ACB,利用相似的性質(zhì)求出AE即可.【題目詳解】解:(1)∵線段AD是由線段AB繞點A按逆時針方向旋轉(zhuǎn)90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=∠ADB=45°,∵△EFG是由△ABC沿CB方向平移得到,∴AB∥EF,∴∠1=∠ABD=45°;(2)由平移的性質(zhì)得,AE∥CG,∴∠EAC=180°-∠C=90°,∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AC=8,AB=AD=10,∴AE=12.5.【題目點撥】本題為平移的性質(zhì),旋轉(zhuǎn)的性質(zhì),相似三角形的判定與性質(zhì)的綜合考查,熟練掌握基礎的性質(zhì)與判定是解題的關鍵.22、(1),;(2),【分析】(1)移項,兩邊同時加1,開方,即可得出兩個一元一次方程,求出方程的解即可;(2)先分解因式,即可得出兩個一元一次方程,求出方程的解即可.【題目詳解】(1),.(2),,.【題目點撥】本題考查了解一元二次方程,有直接開平方法、配方法、公式法、因式分解法,仔細觀察運用合適的方法能簡便計算.23、(1)40°;(2)1.【分析】(1)由∠BCD=18°,∠CFA=108°,利用三角形外角的性質(zhì),即可求得∠B的度數(shù),然后由圓周角定理,求得答案;(2)由正方形的性質(zhì)和已知條件證明△ADE∽△ECF,根據(jù)相似三角形的性質(zhì)可知:,設DE=x,則EC=9﹣x,代入計算求出x的值即可.【題目詳解】(1)∵∠BCD=18°,∠CFA=108°,∴∠B=∠CFA﹣∠BCD=108°﹣18°=40°,∴∠ADC=∠B=40°.(2)解:∵四邊形ABCD是正方形,∴CD=AD=BC=AB=9,∠D=∠C=90°,∴CF=BC﹣BF=2,在Rt△ADE中,∠DAE+∠AED=90°,∵AE⊥EF于E,∴∠AED+∠FEC=90°,∴∠DAE=∠FEC,∴△ADE∽△ECF,∴,設DE=x,則EC=9﹣x,∴,解得x1=3,x2=1,∵DE>CE,∴DE=1.【題目點撥】此題考查三角形的外角的性質(zhì),圓周角定理,正方形的性質(zhì),三角形相似的判定及性質(zhì).24、(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四邊形,理由見解析;②A(1,﹣3)或A(3,﹣3).【分析】(1)由已知可得拋物線與x軸另一個交點(4,0),將(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx+c即可求表達式;(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=,即可求A(,﹣);(3)①由已知可得C(4﹣m,n),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論