版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
浙江省杭州二中2024屆高一數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)取最小值時,則()A. B.C. D.2.已知,則的值是A.1 B.3C. D.3.若且則的值是.A. B.C. D.4.已知,,則()A. B.C. D.5.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.6.已知函數(shù)是定義在上的奇函數(shù),對任意的都有,當時,,則()A. B.C. D.7.函數(shù)f(x)=在[—π,π]的圖像大致為A. B.C. D.8.為參加學校運動會,某班要從甲,乙,丙,丁四位女同學中隨機選出兩位同學擔任護旗手,那么甲同學被選中的概率是()A. B.C. D.9.已知,則()A. B.C. D.10.函數(shù)的圖像大致為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域為______.12.已知函數(shù)對于任意實數(shù)x滿足.若,則_______________13.已知函數(shù),,若對任意,存在,使得,則實數(shù)的取值范圍是__________14.給出下列四個結(jié)論函數(shù)的最大值為;已知函數(shù)且在上是減函數(shù),則a的取值范圍是;在同一坐標系中,函數(shù)與的圖象關(guān)于y軸對稱;在同一坐標系中,函數(shù)與的圖象關(guān)于直線對稱其中正確結(jié)論序號是______15.已知集合,,則_________.16.設函數(shù).則函數(shù)的值域為___________;若方程在區(qū)間上的四個根分別為,,,,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)設函數(shù),求函數(shù)在區(qū)間上的值域;(2)定義表示中較小者,設函數(shù).①求函數(shù)的單調(diào)區(qū)間及最值;②若關(guān)于的方程有兩個不同的實根,求實數(shù)的取值范圍.18.計算(1);(2).19.已知函數(shù).(1)求函數(shù)的最大值及相應的取值;(2)方程在上有且只有一個解,求實數(shù)的取值范圍;(3)是否存在實數(shù)滿足對任意,都存在,使成立.若存在,求的取值范圍;若不存在,說明理由.20.函數(shù)的部分圖象如圖:(1)求解析式;(2)寫出函數(shù)在上的單調(diào)遞減區(qū)間.21.設,為兩個不共線的向量,若.(1)若與共線,求實數(shù)的值;(2)若為互相垂直的單位向量,且,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】利用輔助角公式化簡整理,得到輔助角與的關(guān)系,利用三角函數(shù)的圖像和性質(zhì)分析函數(shù)的最值,計算正弦值即可.【題目詳解】,其中,因為當時取得最小值,所以,故.故選:B.2、D【解題分析】由題意結(jié)合對數(shù)的運算法則確定的值即可.【題目詳解】由題意可得:,則本題選擇D選項.【題目點撥】本題主要考查指數(shù)對數(shù)互化,對數(shù)的運算法則等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.3、C【解題分析】由題設,又,則,所以,,應選答案C點睛:角變換是三角變換中的精髓,也是等價化歸與轉(zhuǎn)化數(shù)學思想的具體運用,求解本題的關(guān)鍵是巧妙地將一個角變?yōu)橐阎獌山堑牟?,再運用三角變換公式進行求解.4、C【解題分析】求出集合,,直接進行交集運算即可.【題目詳解】,,故選:C【題目點撥】本題考查集合的交集運算,指數(shù)函數(shù)的值域,屬于基礎題.5、A【解題分析】由圖象確定以及周期,進而得出,再由得出的值.【題目詳解】顯然因為,所以,所以由得所以,即,因為,所以所以.故選:A【題目點撥】本題主要考查了由函數(shù)圖象確定正弦型函數(shù)的解析式,屬于中檔題.6、C【解題分析】由可推出,可得周期,再利用函數(shù)的周期性與奇偶性化簡,代入解析式計算.【題目詳解】因為,所以,故周期為,又函數(shù)是定義在上的奇函數(shù),當時,,所以故選:C.7、D【解題分析】先判斷函數(shù)的奇偶性,得是奇函數(shù),排除A,再注意到選項的區(qū)別,利用特殊值得正確答案【題目詳解】由,得是奇函數(shù),其圖象關(guān)于原點對稱.又.故選D【題目點撥】本題考查函數(shù)的性質(zhì)與圖象,滲透了邏輯推理、直觀想象和數(shù)學運算素養(yǎng).采取性質(zhì)法或賦值法,利用數(shù)形結(jié)合思想解題8、C【解題分析】求出從甲、乙、丙、丁4位女同學中隨機選出2位同學擔任護旗手的基本事件,甲被選中的基本事件,即可求出甲被選中的概率【題目詳解】解:從甲、乙、丙、丁4位同學中隨機選出2位擔任護旗手,共有種方法,甲被選中,共有3種方法,甲被選中的概率是故選:C【題目點撥】本題考查通過組合的應用求基本事件和古典概型求概率,考查學生的計算能力,比較基礎9、C【解題分析】先對兩邊平方,構(gòu)造齊次式進而求出或,再用正切的二倍角公式即可求解.【題目詳解】解:對兩邊平方得,進一步整理可得,解得或,于是故選:C【題目點撥】本題考查同角三角函數(shù)關(guān)系和正切的二倍角公式,考查運算能力,是中檔題.10、A【解題分析】詳解】由得,故函數(shù)的定義域為又,所以函數(shù)為奇函數(shù),排除B又當時,;當時,.排除C,D.選A二、填空題:本大題共6小題,每小題5分,共30分。11、且【解題分析】由根式函數(shù)和分式函數(shù)的定義域求解.【題目詳解】由,解得且,所以函數(shù)的定義域為且故答案為:且12、3【解題分析】根據(jù)得到周期為2,可得結(jié)合可求得答案.【題目詳解】解:∵,所以周期為2的函數(shù),又∵,∴故答案為:313、【解題分析】若任意,存在,使得成立,只需,∵,在該區(qū)間單調(diào)遞增,即,又∵,在該區(qū)間單調(diào)遞減,即,則,,14、【解題分析】根據(jù)指數(shù)函數(shù)單調(diào)性可得二次函數(shù)的最值,求得的最小值為;根據(jù)對數(shù)函數(shù)的圖象與性質(zhì),求得a的取值范圍是;同一坐標系中,函數(shù)與的圖象關(guān)于x軸對稱;同一坐標系中,函數(shù)與的圖象關(guān)于直線對稱【題目詳解】對于,函數(shù)的最大值為1,的最小值為,錯誤;對于,函數(shù)且在上是減函數(shù),,解得a的取值范圍是,錯誤;對于,在同一坐標系中,函數(shù)與的圖象關(guān)于x軸對稱,錯誤;對于,在同一坐標系中,函數(shù)與的圖象關(guān)于直線對稱,正確綜上,正確結(jié)論的序號是故答案為【題目點撥】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)與應用問題,是基礎題15、【解題分析】由對數(shù)函數(shù)單調(diào)性,求出集合A,再根據(jù)交集的定義即可求解.【題目詳解】解:,,,故答案為:.16、①.②.【解題分析】根據(jù)二倍角公式,化簡可得,分別討論位于第一、二、三、四象限,結(jié)合輔助角公式,可得的解析式,根據(jù)的范圍,即可得值域;作出圖象與,結(jié)合圖象的對稱性,可得答案.【題目詳解】由題意得當時,即時,,又,所以;當時,即時,,又,所以;當時,即時,,又,所以;當時,即時,,又,所以;綜上:函數(shù)的值域為.因為,所以,所以,作出圖象與圖象,如下如所示由圖象可得,所以故答案為:;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)①.答案見解析;②..【解題分析】(1)為上的單調(diào)增函數(shù),故值域為.(2)計算得,由此得到的單調(diào)性和最值,而有兩個不同的根則可轉(zhuǎn)化為與的函數(shù)圖像有兩個不同的交點去考慮.解析:(1)∵函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,∴函數(shù)在區(qū)間上單調(diào)遞增,故,即,所以函數(shù)在區(qū)間上的值域為.(2)當時,有,故;當時,,故,故,由(1)知:在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,故,∴函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.有最大值4,無最小值.②∵在上單調(diào)遞減,∴.又在上單調(diào)遞增,∴.∴要使方程有兩個不同的實根,則需滿足.即的取值范圍是.點睛:求函數(shù)值域,優(yōu)先函數(shù)的單調(diào)性,對于形如的函數(shù),其圖像是兩個圖像中的較低者.18、(1)2(2)【解題分析】(1)根據(jù)對數(shù)計算公式,即可求得答案;(2)將化簡為,即可求得答案.【小問1詳解】【小問2詳解】19、(1)2,(2)或(3)存在,【解題分析】(1)由三角恒等變換化簡函數(shù),再根據(jù)正弦函數(shù)性質(zhì)可求得答案;(2)將問題轉(zhuǎn)化為函數(shù)與函數(shù)在上只有一個交點.由函數(shù)的單調(diào)性和最值可求得實數(shù)的取值范圍;(3)由(1)可知,由已知得,成立,令,其對稱軸,分,,討論函數(shù)的最小值,建立不等式,求解即可.【小問1詳解】解:由得.令,解得,∴函數(shù)的最大值為2,此時;【小問2詳解】解:方程在上有且有一個解,即函數(shù)與函數(shù)在上只有一個交點.∵,∴.∵函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且,,.∴或;【小問3詳解】解:由(1)可知,∴.實數(shù)滿足對任意,都存在,使得成立,即成立,令,其對稱軸,∵,∴①當時,即,,∴;②當,即時,,∴;③當,即時,,∴.綜上可得,存在滿足題意的實數(shù),的取值范圍是.20、(1)(2)【解題分析】(1)根據(jù)圖象求得,從而求得解析式.(2)利用整體代入法求得在區(qū)間上的單調(diào)遞減區(qū)間.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 居家養(yǎng)老食堂合同(2篇)
- 2025年度O2O電商代運營團隊培訓與支持合同3篇
- 二零二五年度酒吧服務員全職雇傭合同規(guī)范文本3篇
- 二零二五年度生物科技園開發(fā)與管理承包合同2篇
- 二零二五版綠色環(huán)保辦公樓房地產(chǎn)買賣代理合同3篇
- 基于二零二五年度的采購合同2篇
- 二零二五年攝影攝像與后期制作合同2篇
- 二零二五版板材模板設計與制造技術(shù)服務合同3篇
- 二零二五年度電力系統(tǒng)用變壓器安裝及節(jié)能降耗合同3篇
- 二零二五版土地購置與綠色生態(tài)農(nóng)業(yè)合作合同3篇
- 銀行會計主管年度工作總結(jié)2024(30篇)
- 教師招聘(教育理論基礎)考試題庫(含答案)
- 2024年秋季學期學校辦公室工作總結(jié)
- 上海市12校2025屆高三第一次模擬考試英語試卷含解析
- 三年級數(shù)學(上)計算題專項練習附答案集錦
- 長亭送別完整版本
- 《鐵路軌道維護》課件-更換道岔尖軌作業(yè)
- 股份代持協(xié)議書簡版wps
- 職業(yè)學校視頻監(jiān)控存儲系統(tǒng)解決方案
- 《銷售心理學培訓》課件
- 2024年安徽省公務員錄用考試《行測》真題及解析
評論
0/150
提交評論