版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Net-zeroheat
LongDurationEnergyStorage
toaccelerateenergysystemdecarbonization
PublishedinNovember2022bytheLDESCouncil.Copiesofthisdocumentareavailableuponrequestorcanbedownloadedfromourwebsite:
.
ThisreportwasauthoredbytheLDESCouncilincollaborationwithMcKinsey&Companyasknowledgepartner.Thisworkisindependent,reflectstheviewsoftheauthors,andhasnotbeencommissionedbyanybusiness,government,orotherinstitution.Theauthorsofthereportconfirmthat:
Therearenorecommendationsand/oranymeasuresand/ortrajectorieswithinthereportthatcouldbeinterpretedasstandardsorasanyotherformof(suggested)coordinationbetweentheparticipantsofthestudyreferredtowithinthereportthatwouldinfringe
EUcompetitionlaw;and
Itisnottheirintentionthatanysuchformofcoordinationwillbeadopted.
Whilethecontentsofthereportanditsabstractimplicationsfortheindustrygenerallycan
bediscussedoncetheyhavebeenprepared,individualstrategiesremainproprietary,confidential,andtheresponsibilityofeachparticipant.Participantsareremindedthat,aspartoftheinvariablepracticeoftheLDESCouncilandtheEUcompetitionlawobligationstowhichmembershipactivitiesaresubject,suchstrategicandconfidentialinformationmustnotbesharedorcoordinated—includingaspartofthisreport.
PAGE
43
PAGE
10
Contents
Preface 4
Executivesummary 8
Acronyms 13
TheroleofLDESinnet-zeroenergy 14
TESasanenablertodecarbonizingheat 18
LDEStechnologies—costandcompetitiveness 24
TESbusinesscases 34
Anintegratedenergysystemperspective 48
UnlockingtheTESopportunity 54
Conclusion 57
AppendixA:Methodologyandassumptions 58
AppendixB:StateoftheTESindustry 67
Acknowledgements 69
Preface
Wemustcapturethenarrowwindowofopportunitytoachieveanet-zeroenergysystem.Thedecarbonizationoftheenergysectorneedstoacceleratetobecomealignedwithanet-zeropathwaythatlimitsglobalwarmingtobelow1.5°C.However,achievingnet-zeroemissionsby2050requiresmassivedevelopmentofrenewables,newandreinforcedinfrastructure,andtheadoptionofnewcleantechnologies.Manychallengescompound
inthistransition,assupplychainsneedtobescaledup,end-useequipmentneedstobeadapted,andinfrastructureneedstobe
deployedandreinforced(forexample,transmis-sionanddistributionelectricitygridexpansionscantakeupto15yearstorealize).Immediateactionisrequiredtomeetemission-reductiontargets,limittheimpactofclimatechange,andmaximizetheopportunitiesahead.
Asoutlinedinthe2021LDESNet-zeropowerreport,1long-durationenergystorage(LDES)offersalow-costflexibilitysolutiontoenableenergysystemdecarbonization.LDES2canbedeployedtostoreenergyforprolongedperiodsandcanbescaledupeconomicallytosustainenergyprovisionformultiplehours(tenormore),days(multidaystorage),months,andseasons.LDEScanstoreenergyinvariousforms,includingmechanical,thermal,electrochemical,orchemicalandcancontributesignificantlytothecost-efficientdecarbonizationoftheenergysystem.
Furthermore,ithelpsaddressmajorenergytransitionchallengessuchassolarandwindenergysupplyvariability,gridinfrastructurebottlenecks,oremissionsfromheatgeneration.
ThisreportpresentsthelatestviewontheroleofLDESinhelpingachieve
Net-zeropowerandheatby2050,3focusingonthepotentialroleofthermalenergystorage(TES)inrealizingnet-zeroheat.
ItbuildsonpriorLDESCouncilresearchandanalysisandpresentsupdatedcost
perspectivesbasedondatafromLDESCouncilmembers.Asafollow-uptopreviousLDESCouncilpublications,thisreportfocusesontheheatsector,apivotalcomponentinachievingglobaldecarbonizationandclimatetargets.
Accordingly,italsofocusesonaparticularsetofLDEStechnologies,TES,whichcanstoreheat,decarbonizeheatapplications,andintegraterenewablesinthissectorandthebroaderenergysystem.
Thisreportalsohighlightshowanintegratedsystemapproachisimperativetocost-efficientlydecarbonizingenergysystems.4Electricity,heat,andhydrogenarebecomingincreasinglyinterconnected,drivenbythegrowinguptakeofrenewableenergyandaccesstotechnologiesthatintegratethem,suchasheatpumpsandLDES(Exhibit1).
Thiscreatestheneedtolookattheintegratedecosystemratherthantheseparateenergysectorstojointlyinformcost-optimizedenergyinfrastructuredevelopments.Theanalysesinthisreporttakeinterdependenciesbetweenpower,heat,andhydrogenintoaccounttoassessthecost-optimizedmixofflexibilitysolutionsneededfortheheatandpowersectors.IthighlightstherelationshipbetweenpowerLDESandTEStoacceleratetheenergytransition,andtherolethatTEScanplayindecarbonizingheatapplications.
1https://
/insights/
2WheneverLDESismentionedasatechnologygroup,itisdefinedasatechnologystoringenergyfortenormorehours,asperARPA-E’sdefinition.WhenLDESismentionedinanalysisormodeling,theactualdurationlengthisalwaysspecified,inlinewithNREL’srecommendation.
3Itisassumedthatthepowersectorachievesnet-zeroemissionsby2040,andothersectorsby2050.
4Thedefinitionofenergysystemusedinthisreportincludesallcomponentsrelatedtotheproduction,conversion,anduseofelectricalenergy,heat,andhydrogen.TheelectrificationofthetransportsectorisincludedindirectlyinthefinalelectricitydemandscenariofromtheMcKinseyGlobalEnergyPerspective.
PAGE
5
PAGE
6
Exhibit1
Power,heat,andhydrogeninterconnections
Power
Hydrogencombinedheatandpower
Hydrogen
Heat
Power-to-hydrogenHydrogen-to-power
Power-to-heatHeat-to-power
Focusofthisreport
Hydrogen-to-heat
AbouttheLDESCouncil
TheLDESCouncilisaglobal,executive-ledorganizationthatstrivestoacceleratethedecarbonizationoftheenergysystematthelowestcosttosocietybydrivingtheinnovationanddeploymentofLDESanddecreasingemissions.TheLDES
CouncilwaslaunchedattheConferenceofParties(COP)26andcurrentlycomprises64companies.5Itprovidesfact-basedguidancetogovernmentsandindustry,drawingfromtheexperiencesofitsmembers,whichincludeleadingtechnologyproviders,industryandservicecustomers,capitalproviders,equipmentmanu-facturers,andlow-carbonenergysystemintegratorsanddevelopers.
Alltechnologyproviders,industryandservicescustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopersaremembersoftheLDESCouncil.
Technologyproviders
5MembercountatthetimeofthereleaseofthisreportinNovember2022.
PAGE
7
PAGE
8
Industryandservicescustomers
Capitalproviders
Equipmentmanufacturers
Low-carbonenergysystemintegratorsanddevelopers
Executivesummary
Decarbonizingtheglobalenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.Torealizea1.5°Cscenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincrease
intotalelectricitydemandbythatyear.6Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-couplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.This,inadditiontothe
growingshareofrenewablesandelectrification,furtherincreasestheenergysystem’scom-plexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.
LDESoffersacleanflexibilitysolutiontosecurepowerandheatreliability.LDESencompassesarangeoftechnologiesthatcanstoreelectricalenergyinvariousformsforprolongedperiodsatacompetitivecostandatscale.Thesetechnologiescanthendischargeelectricalenergywhenneeded—overhours,days,orseasons—inordertofulfilllong-durationsystemflexibilityneedstoshifttheincreasingvariable,renewableenergysupplytomatchdemand.Thisreportbuildsonthe2021LDESCouncilNet-zeropowerreport
byfocusingontheroleofLDESinrealizingnet-zeropowerandheatwhileexpandingontherolethermalenergystorage(TES)canplayindecarbonizingheatapplications.
TESprovidesanLDESsolutiontoelectri-fyingandfirmingheat.Decarbonizingtheheatsectoriscrucialforrealizinganet-zeroenergysystemby2050,giventhatitrepresentsroughly45percentofallenergy-relatedemissionstoday.7TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariable
renewableenergysources.Inaddition,itcanoptimizeheatconsumptioninindustrial
processesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources(forexample,fromthermalsolar).
TEScanenablethecost-efficientelectri-ficationofmostheatapplications.TEScoversavarietyoftechnologiesthatcanaddressawiderangeofstoragedurations(fromintradaytoseasonal)andtemperatures(fromsubzeroto2,400°C).Accordingtothe2022LDESbenchmarkresults,TESenablescost-ef-ficientelectrificationanddecarbonizationofthemostwidelyusedheatapplications,namelysteamandhotair.Thebenchmarkresultsalsoindicatethatfirmingheatisverycost-efficientwhenthefinaldemandisheat.
SomeTEStechnologiesarealreadycommerciallyavailablewithvarious
easy-to-customizeuses.Todate,themostcommonlydeployedTEStechnologiesincludemedium-pressuresteam,withvariousappli-cations,includinginthechemicalsorfoodandbeverageindustries.Additionally,developingtechnologieswillexpandtheTESsolutionspacewithinnovativeconceptsandaddresstemperatureneedswellabove1,000°C.
TESbusinesscasesdemonstrateprofi-tabilityataninternalrateofreturn(IRR)of16to28percent,subjecttolocalmarketconditions.Theseincludeoptimalphysicalconfigurations(accesstocaptiverenewables,captiveheat,orgridelectricity)andmarketdesigns(includinglowgridfeesandtheremunerationofflexibility).ThebusinesscaseassessmentscoverawiderangeofrealisticTESusecases,namely:medium-pressuresteaminachemicalsplant(upto28percentIRR),districtheatingsuppliedbyapeakerplant(upto16percentIRR),high-pressuresteaminanaluminarefinery(upto16percentIRR),andco-generationinanoff-gridgreenhouse(upto22percentIRR).Allmarket-exposedbusiness
6“Netzeroby2050,aroadmapfortheglobalenergysector,”IEA,2021.
7Thebaselineincludesemissionsfromheating,industrialprocesses,transport,andotherenergysectoremissions.Itexcludespowergenerationemissions.
PAGE
9
PAGE
10
casesindicateasupportiveecosystemthatacknowledgesthevalueofflexibility,suchasancillaryservices,wouldlikelybecriticaltoensuringwidecommercialadoption.The
businesscasewithbehind-the-meterrenewablegenerationshowsthatTEScanalreadybecommerciallyfeasibleregardlessofexternalmarketconditions.
LDEStechnologiesareexpectedtobecomeincreasinglycost-competitiveasthemarketmatures.Theupdated2022powerLDES
costbenchmarksolidifiestheforecastthatLDEScostswilldeclineinthefollowingyears,suggestinga25to50percentoverallcapitalexpenditure(capex)reductionofpowerLDEStechnologiesby2040.Inaddition,the2022TEScostbenchmarkindicatesthatTEScapexisalsoexpectedtodeclineby2040,withanestimateddropofbetween5and30percentforpowercapexand15and70percentforenergystoragecapex.
AcasestudyontheportofRotterdamexemplifiestherelevanceofLDESfordecarbonizingenergyhubswhilecreatingsystemvalue.Thecasestudyrepresentsatypicalindustrialhubwithsignificantpowerandheatdemandon-site,whereacombination
ofTESandpowerLDEScanplayaroleindecarbonizingthesystem.InanindustriallocationliketheportofRotterdam,theneedforindustrialheatingcanfundamentallychangetheconfigurationforanet-zeroenergysystem.TEScanfirmthevariableoffshorewindsupplyinto
amorestablesupplyofcleanheatforindustrialheating,includinghigh-temperatureheating.
TEScoulddoubletheglobalLDEScapacitypotentialinacost-optimizednet-zeroenergypathwayinlinewitha1.5°Cscenario.Basedonintegratedsystemmodeling,TEScanexpandtheoverallinstalledcapacitypotentialofLDEStobetween2and8TWby2040(versus1to3TWwithoutTES),whichtranslatestoacumulativeinvestmentofUSD1.6trillionto
USD2.5trillion.TESenablesthisadditionalLDESopportunitybyprovidingacost-efficientalternativetodecarbonizingheatandhigh-tem-peratureheatingapplications.ThisisestimatedtoreducesystemcostsbyuptoUSD540billionperyearwhilecreatingbroadersystemvaluebyenablinganacceleratedrenewablesbuild-outandoptimizationofgridutilization.
CriticalsupportelementscouldhelpdrivemoreTESadoption.Asupportiveecosystemthatrewardsflexibilityandpromotesatech-nologicallylevelplayingfieldforflexibilitysolutionslikeLDESiscriticaltoacceleratingthescale-upofTES.Additionally,increasingawarenessandprovidingsupporttoderiskinitialinvestmentsispivotal.Businessleaders,policymakers,andinvestorshaveanimportantroletoplayinunlockingtheTESpotentialbyreducinglong-termuncertaintyandtherebyshapingthecost-optimizedpathwaytowardthenet-zeroenergysystemofthefuture.
Net-zeroheat
Power-to-heatHeat-to-power
LongDurationEnergyStoragetoaccelerateenergysystemdecarbonization
Thetransitiontonetzerorequiresanintegratedenergysystemperspective
LDES
Infra-
structure
Realizingacost-optimizedtransitiontonetzeroacrossallenergysectorsrequiressignificantdeploymentofrenewables,increasedinterconnectionsbetweenpower,heat,andhydrogen,andsupportinginfra-structure.Systemflexibilitywillbecriticaltosecuringenergysystemreliability
Power-to-hydrogenHydrogen-to-power
Power
Heatdecarbonizationiscriticalfornetzero,asitaccountsfor~45%ofenergy-relatedemissions
Hydrogen-to-heat
Hydro-gen
CHPwithhydrogenproductionanduse
Globalfinalenergyconsumptionbysector
Shareofglobalenergy-relatedCO2eemissions1
Machinery,appliances,lighting
Transportation
Industry
Buildings:heating
DistrictheatingBuildings:cooking
Heatingandcooling
20%
fromindustrialheat
10%
frombuildingsheat
Heat
Longdurationenergystorageenablesacost-optimizedpathwaytowardnetzero
Acost-optimizednet-zeropathwaycouldby2040resultin...
2?8TW
deployedLDES
capacity
USD1.7?3.6tr
cumulativeLDEScapex
investments
upto
USD540bn
systemsavingsperyear
1.Baselineexcludeselectricityemissions.
PAGE
11
Electric Heat
boiler pump
withTES withTES
withLi-ionbattery
withLi-ionbattery
ElectricboilerHeatpump
Biomassboiler
Gasboiler HydrogenwithCCS2 boiler
Gasboiler
15?25
25?35
Thermalenergystorage(TES)...
...comprisesawiderangeoftechnologies
2,400°C
<0°C
Storagetemperature
Months
Hours
Storagedurationusecase
SomeTEStechnologies
arealreadycommercially
available
R&D Pilots Commercially
available
Technicalmaturity
TESenableselectrificationofheatapplicationswithdifferenttemperatureanddurationneeds
...isacost-efficient24/7heatdecarbonizationsolution
Technologyequivalents
65?100 70?100
Levelizedcostofheat(steam)forselectedtechnologies1USD/MWh
40?65
45?65
45?70
30?60
TESmakesstoringheatmorecost-efficientthanstoringpowerforheatapplications
…canpresentattractivebusinesscasessubjecttolocalconditions.IRRsforselectedusecases
UpsidecaseBasecase
28%
6%
Chemicalsplant
22%
Off-gridgreenhouse
16%
0%
Districtheatingpeakerplant
16%
Aluminarefinery
TESbehind-the-meterbusinesscasescanbepositiveastherearenogridconnectionfees
...requiresenablerstodrivebroadadoption
Rewardvalueofflexibility
Reducedgridfees
Ancillarymarkets
Createatechnolo-gicallylevelplayingfieldacrossflexibilitysolutionsthrough
Regulations
Standards
Increaseaware-nessofTEStechnologies
Pilots
Demonstration
Plants
Deriskinitialinvestments
Subsidies
Guarantees
Costrangesreflectfuelprices(gas,electricity,biomass).IncludesCO2emissioncostsofUSD100/t.
Carboncaptureandstorage.
PAGE
13
Acronyms
Capex Capitalexpenditure
CCS Carboncaptureandstorage
CO2 Carbondioxide
CO2e Carbondioxideequivalent
EJ Exajoules
GHG Greenhousegas
GtCO2eq GigatonsofcarbondioxideequivalentGW Gigawatt
GWh Gigawatt-hour
Hz Hertz
IRR Internalrateofreturn
kW Kilowatt
kWh Kilowatt-hour
LCOE Levelizedcostofelectricity
LCOH Levelizedcostofheat
Li-ion Lithium-ion
LDES LongdurationenergystorageMPM McKinseyPowerModel
MW Megawatt
MWh Megawatt-hour
MWhth Megawatt-hourthermalMWth Megawattthermal
NPV Netpresentvalue
PV Photovoltaic
PPA Powerpurchaseagreement
RTE Round-tripefficiency
R&D Researchanddevelopment
TTF Titletransferfacility
TW Terawatt
TWh Terawatt-hour
TES Thermalenergystorage
T&D TransmissionanddistributionWACC Weightedaveragecostofcapital
1
TheroleofLDESinnet-zeroenergy
Decarbonizingtheenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.
Torealizea1.5°Cscenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincreaseintotalelectricitydemand
bythatyear.Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-couplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.
This,inadditiontothegrowingshareofrenewablesandelectrification,furtherincreasestheenergysystem’scomplexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.
PAGE
15
Anet-zeroenergysystemrequirescleanflexibilitysolutions
Achievingnet-zeroemissionsintheenergysectorby2050ispivotalforlimitingglobalwarmingto1.5oC.Tokeepglobalwarmingbelow1.5oCcomparedtopreindustriallevels,ascalledforintheParisAgreement,greenhousegas(GHG)emissionsneedtoreachnetzeroby2050.Theenergysectorcurrentlyaccountsforroughlythree-quartersofGHGemissionsandholdsthekeytomitigatingtheworsteffects
ofclimatechange.8Replacingpollutingfossilenergywithrenewableenergysourceslikewindorsolarandmeetingtheenergy-shiftingdemandwithLDESwillhelpsignificantlyreducecarbonemissionswhilecreatingareliableenergysystem.
Thegrowthofsolarandwindgenerationisincreasingthevariabilityoftheenergy
supplymixandtheneedforcleanflexibilitysolutionstosafeguardenergysystemreliability.Ascountriesdecarbonize,theglobalshareofrenewableenergysupplyisexpectedtogrowdramatically.Net-zerotransitionscenariosindicatearoughlythreefoldandfivefoldincreaseinrenewableenergysupply,withrenewablessupplyingupto
30and67percentofglobalenergyin2030and2050,respectively.Furthermore,electrificationisexpectedtoincrease,doublingtheelectricitydemandby2050.9Therefore,thereisagrowingneedforcleanflexibilitysolutionsthatbridgetherenewablessupply-and-demandgapwhilesecuringsystemreliability.EnsuringrenewableelectricitymatchesdemandwithLDEScanhelpprovidetheflexibility,securityofsupply,andresiliencyneededtomeetglobalnet-zerotargets.
Peak
solargeneration
Energyshifting
Industrialheatdemand
Definitionsofenergy
systemreliabilityandflexibility
Energysystemreliabilityistheabilityofenergysystemstodeliverenergyinthequantityandqualitydemandedbyconsumers.
Energysystemflexibilityistheabilityofenergysystemstorespondtosupply-and-demandvariationspromptlyandsupportsreliability.
LDESoffersacleanflexibilitysolutionthatcanacceleraterenewablesbuild-out
LDESprovidesenergysystemflexibility.LDESsolutionsenabletheshiftingofenergyfromtimesofhighsupplytotimesofhighdemand,therebyhelpingpreservesystembalanceandsecuringitsreliability.LDEScanbedeployedcompetitivelytostoreenergyforprolongedperiodsandsustainenergyprovisionformultiplehours,days,orweeks.Suchlong-durationflexibilityisexpectedtobecomeessentialtofirmsupplyastheshareofrenewableenergysupplyincreases.LDES
cancovervariousdurationsdrivenbytechnicalconsiderationsandeconomics.
LDEScanacceleratethebuild-outofrenewablesbyoptimizinginfrastructureutilization.Theenergy-shiftingcapabilityofLDEShasmultiplesystembenefits.First,itcouldreduceenergycurtailmentandrelatedopportunitycostsbyfacilitatingsupply-sideenergystorage.Forexample,theinitialmod-elingofanaluminarefineryusecaseindicatedthatLDEScouldreduceoverallgenerationcapacityneedsby15to30percent.Second,itcouldhelpimproveoverallgridutilizationthroughsupply-and-demand-sideenergy
storage,reducingstressonthegrid.Asaresult,LDEScanbedeployedacrosstheelectricitygrid(forexample,atcriticalcorridorsatcapac-ity)toacceleraterenewables’development.
Lastly,LDEScanprovideothersystembenefitslikestability,withsometechnologiesofferingserviceslikeinertiaprovisionorfrequencyregulation.
Noon Midnight
8UnitedNationsNetZeroCoalition.
9“Netzeroby2050,aroadmapfortheglobalenergysector,”IEA,2021.
LDEScansupportthesecurityofsupply
Theneedtoensureanaffordable,reliable,cleanenergysystemhasbeenheightenedbyrecentchallengesintheenergysector,whichhaveincreasedtheprominenceofenergysecurity
onglobalagendas.Europeisnowfacingelectricityandnaturalgaspricesthatareovertentimeshigherthanhistoricalaverages,drivenbymultiplefactorssuchasthewarinUkraineandtheriseinglobaldemandfollowingtheCOVID-19pandemic.10Globalgasmarketshavealsobeenaffected,causingUSelectricitypricestoincreasethreefoldbetween2020and2022.11
IncorporatingLDEScanhelpincreasethesecurityofsupplyandcreatenewusecasesforrenewableenergy.LDEScanalsounlocknewopportunitiesthatarenotthoroughlyaddressedbyshorter-durationstoragesolutions.Examplesinclude:helpingincreasetheshareofrenew-ablesintheenergymix,providingresiliencetounreliablegridsatlongdurations(likeatisolatedoroff-gridlocations),enablingcost-efficient24/7renewablepowerpurchaseagreements(PPAs),orprovidingstabilityservicestothegrid.Inaddition,TEScansupportnewheatingusecases,namelythewiderelectrificationofheat,reuseofwasteheat,demand-sidemanagement,andlowerrenewablescurtailment.
10DutchTTFGasFutures.
11U.S.EnergyInformationAdministration(EIA).
Therearedifferentoptionstoconsiderforenergysystemflexibility
Withintheelectricitysector,fiveflexibilityoptionscanhelpmatchsupplyanddemand:
Energystorage,includingLi-ionbatteriesanddeployableLDESsolutionssuchasclosedlooppumpedstorage
Dispatchablecapacitysuchashydropower
Renewableenergycurtailment
Transmissionanddistributiongridexpansions
Demand-sidemanagement
Furthermore,systemflexibilityisincreasinglyimportantinrespondingtomarketsupplyfluctuations.
Theheatsectorhasanalogouscleanflexi-bilitysolutionstotheelectricitysector,thoughwithclean-heat-specifictechnologies:
Thermalenergystorage
Dispatchablecapacitylikeclean-fuelboilers
Robustheatinginfrastructurelikedistrictheating
Integratingtheelectricityandheatsectorscanbecriticalinenablingcleanflexibility.Electricityandheatwerehistoricallyconnectedthroughheatenginesinconventionalgenerationplants.Goingforward,electricityandheatareexpectedtobecomemoreintegratedthroughhigheradoptionofpower-to-heattechnologies,suchasheatpumpsorelectricboilers,andrenewableheat-to-powertechnologies,likeconcentratedsolarpower.Theincreasedinterconnectednessofthesectorssupportstheirdecarbonizationandtheintegration
ofrenewables.Furthermore,solutionsthatenhancesectorintegration—likeTES—driveflexibilityby,forinstance,storingenergyattimesofoversupplyanddischargingheatattimesofundersupply.Giventhegrowinginterdepen-denciesofelectricityandheat,anintegratedperspectiveisbecomingrelevanttorealizinganet-zeroenergysystem.
16
PAGE
17
KEYTAKEAWAYS
?Astheshareofvariablerenewableenergygrowssteadily,thereisagreaterneedforcleanflexibilitysolutions,likeLDES,tosecuresystemreliability.
?LDESisessentialforkeepingglobalwarmingbelow1.5°Casitcanhelpacceleratethedevelopmentofrenewables.
?Theintegrationoftheenergysystemthroughsectorcouplingimprovesflexibility,securityofsupply,and,consequently,systemreliabilityandresiliency.
2
TESasanenablertodecarbonizingheat
Decarbonizingtheheatsectoriscrucialtorealizinganet-zeroenergysystemin2050,giventhat,excludingpower,itrepresentsabout45percent
ofallenergy-relatedemissionstoday.
TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariablerenewablesources.
Inaddition,itcanoptimizeheatconsumptioninindustrialprocessesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources.
PAGE
19
PAGE
22
Mostheatapplicationscanbedecarbonizedthroughelectrifi-cation
Heataccountsforabout45percentofenergy-relatedemissions.Heatingandcoolingusecasesaccountformorethan50percentofglobalenergyconsumptionacrossallsectorsandabout45percentof
globalenergy-relatedCO2emissions,excludingpower(10Gtin2019).Industrialapplicationsaccountforthelargestshareofheatconsump-
tion,at40percentoftotalheatdemand,andcompriseusecasesvaryingfromlow-tohigh-gradeheatingabove1,500°C.Buildingheatingandcoolingisalsoasignificantcontributorataround30percentoftotalheatdemand,12thoughtypicallyatlowertempera-turesaroundorbelow100°C.Lastly,heatingisusedforcookingaswellasdistrictheating(Exhibit2).
H
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版房產(chǎn)抵押擔(dān)保簡易合同范本
- 2024浪漫婚典餐飲服務(wù)及酒席合同版B版
- 2024年銷售合同:高端智能手機(jī)銷售代理協(xié)議
- 2024房地產(chǎn)銷售合同標(biāo)的詳細(xì)描述
- 2023-2024年消防設(shè)施操作員之消防設(shè)備基礎(chǔ)知識題庫(附帶答案)
- 2022年中考地理一輪復(fù)習(xí):氣候
- 2024招投標(biāo)法規(guī)與協(xié)議管理實(shí)務(wù)操作指南
- 2024版廉潔從業(yè)保障協(xié)議版A版
- 2024年進(jìn)出口報(bào)關(guān)業(yè)務(wù)協(xié)作合同版B版
- 勞務(wù)專業(yè)承包合同(2篇)
- 食堂日??己嗽u分表(后勤)
- 高頻淬火設(shè)備安全操作規(guī)程
- 閘閥的操作力矩參考表
- 浙江省市政工程安全臺賬完整
- 環(huán)氧樹脂參考配方大全
- 花木綠化養(yǎng)護(hù)考核評分表
- #2鍋爐爐膛內(nèi)腳手架搭設(shè)及拆除施工方案
- 110KV變電站工程創(chuàng)優(yōu)監(jiān)理實(shí)施細(xì)則
- 檢驗(yàn)批劃分大全16頁
- 教材中醫(yī)方劑學(xué)
- 2022年2022年電子信息系統(tǒng)機(jī)房設(shè)計(jì)規(guī)范
評論
0/150
提交評論