2022凈零熱儲能長時(shí)儲能加速能源系統(tǒng)脫碳英文版_第1頁
2022凈零熱儲能長時(shí)儲能加速能源系統(tǒng)脫碳英文版_第2頁
2022凈零熱儲能長時(shí)儲能加速能源系統(tǒng)脫碳英文版_第3頁
2022凈零熱儲能長時(shí)儲能加速能源系統(tǒng)脫碳英文版_第4頁
2022凈零熱儲能長時(shí)儲能加速能源系統(tǒng)脫碳英文版_第5頁
已閱讀5頁,還剩64頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Net-zeroheat

LongDurationEnergyStorage

toaccelerateenergysystemdecarbonization

PublishedinNovember2022bytheLDESCouncil.Copiesofthisdocumentareavailableuponrequestorcanbedownloadedfromourwebsite:

.

ThisreportwasauthoredbytheLDESCouncilincollaborationwithMcKinsey&Companyasknowledgepartner.Thisworkisindependent,reflectstheviewsoftheauthors,andhasnotbeencommissionedbyanybusiness,government,orotherinstitution.Theauthorsofthereportconfirmthat:

Therearenorecommendationsand/oranymeasuresand/ortrajectorieswithinthereportthatcouldbeinterpretedasstandardsorasanyotherformof(suggested)coordinationbetweentheparticipantsofthestudyreferredtowithinthereportthatwouldinfringe

EUcompetitionlaw;and

Itisnottheirintentionthatanysuchformofcoordinationwillbeadopted.

Whilethecontentsofthereportanditsabstractimplicationsfortheindustrygenerallycan

bediscussedoncetheyhavebeenprepared,individualstrategiesremainproprietary,confidential,andtheresponsibilityofeachparticipant.Participantsareremindedthat,aspartoftheinvariablepracticeoftheLDESCouncilandtheEUcompetitionlawobligationstowhichmembershipactivitiesaresubject,suchstrategicandconfidentialinformationmustnotbesharedorcoordinated—includingaspartofthisreport.

PAGE

43

PAGE

10

Contents

Preface 4

Executivesummary 8

Acronyms 13

TheroleofLDESinnet-zeroenergy 14

TESasanenablertodecarbonizingheat 18

LDEStechnologies—costandcompetitiveness 24

TESbusinesscases 34

Anintegratedenergysystemperspective 48

UnlockingtheTESopportunity 54

Conclusion 57

AppendixA:Methodologyandassumptions 58

AppendixB:StateoftheTESindustry 67

Acknowledgements 69

Preface

Wemustcapturethenarrowwindowofopportunitytoachieveanet-zeroenergysystem.Thedecarbonizationoftheenergysectorneedstoacceleratetobecomealignedwithanet-zeropathwaythatlimitsglobalwarmingtobelow1.5°C.However,achievingnet-zeroemissionsby2050requiresmassivedevelopmentofrenewables,newandreinforcedinfrastructure,andtheadoptionofnewcleantechnologies.Manychallengescompound

inthistransition,assupplychainsneedtobescaledup,end-useequipmentneedstobeadapted,andinfrastructureneedstobe

deployedandreinforced(forexample,transmis-sionanddistributionelectricitygridexpansionscantakeupto15yearstorealize).Immediateactionisrequiredtomeetemission-reductiontargets,limittheimpactofclimatechange,andmaximizetheopportunitiesahead.

Asoutlinedinthe2021LDESNet-zeropowerreport,1long-durationenergystorage(LDES)offersalow-costflexibilitysolutiontoenableenergysystemdecarbonization.LDES2canbedeployedtostoreenergyforprolongedperiodsandcanbescaledupeconomicallytosustainenergyprovisionformultiplehours(tenormore),days(multidaystorage),months,andseasons.LDEScanstoreenergyinvariousforms,includingmechanical,thermal,electrochemical,orchemicalandcancontributesignificantlytothecost-efficientdecarbonizationoftheenergysystem.

Furthermore,ithelpsaddressmajorenergytransitionchallengessuchassolarandwindenergysupplyvariability,gridinfrastructurebottlenecks,oremissionsfromheatgeneration.

ThisreportpresentsthelatestviewontheroleofLDESinhelpingachieve

Net-zeropowerandheatby2050,3focusingonthepotentialroleofthermalenergystorage(TES)inrealizingnet-zeroheat.

ItbuildsonpriorLDESCouncilresearchandanalysisandpresentsupdatedcost

perspectivesbasedondatafromLDESCouncilmembers.Asafollow-uptopreviousLDESCouncilpublications,thisreportfocusesontheheatsector,apivotalcomponentinachievingglobaldecarbonizationandclimatetargets.

Accordingly,italsofocusesonaparticularsetofLDEStechnologies,TES,whichcanstoreheat,decarbonizeheatapplications,andintegraterenewablesinthissectorandthebroaderenergysystem.

Thisreportalsohighlightshowanintegratedsystemapproachisimperativetocost-efficientlydecarbonizingenergysystems.4Electricity,heat,andhydrogenarebecomingincreasinglyinterconnected,drivenbythegrowinguptakeofrenewableenergyandaccesstotechnologiesthatintegratethem,suchasheatpumpsandLDES(Exhibit1).

Thiscreatestheneedtolookattheintegratedecosystemratherthantheseparateenergysectorstojointlyinformcost-optimizedenergyinfrastructuredevelopments.Theanalysesinthisreporttakeinterdependenciesbetweenpower,heat,andhydrogenintoaccounttoassessthecost-optimizedmixofflexibilitysolutionsneededfortheheatandpowersectors.IthighlightstherelationshipbetweenpowerLDESandTEStoacceleratetheenergytransition,andtherolethatTEScanplayindecarbonizingheatapplications.

1https://

/insights/

2WheneverLDESismentionedasatechnologygroup,itisdefinedasatechnologystoringenergyfortenormorehours,asperARPA-E’sdefinition.WhenLDESismentionedinanalysisormodeling,theactualdurationlengthisalwaysspecified,inlinewithNREL’srecommendation.

3Itisassumedthatthepowersectorachievesnet-zeroemissionsby2040,andothersectorsby2050.

4Thedefinitionofenergysystemusedinthisreportincludesallcomponentsrelatedtotheproduction,conversion,anduseofelectricalenergy,heat,andhydrogen.TheelectrificationofthetransportsectorisincludedindirectlyinthefinalelectricitydemandscenariofromtheMcKinseyGlobalEnergyPerspective.

PAGE

5

PAGE

6

Exhibit1

Power,heat,andhydrogeninterconnections

Power

Hydrogencombinedheatandpower

Hydrogen

Heat

Power-to-hydrogenHydrogen-to-power

Power-to-heatHeat-to-power

Focusofthisreport

Hydrogen-to-heat

AbouttheLDESCouncil

TheLDESCouncilisaglobal,executive-ledorganizationthatstrivestoacceleratethedecarbonizationoftheenergysystematthelowestcosttosocietybydrivingtheinnovationanddeploymentofLDESanddecreasingemissions.TheLDES

CouncilwaslaunchedattheConferenceofParties(COP)26andcurrentlycomprises64companies.5Itprovidesfact-basedguidancetogovernmentsandindustry,drawingfromtheexperiencesofitsmembers,whichincludeleadingtechnologyproviders,industryandservicecustomers,capitalproviders,equipmentmanu-facturers,andlow-carbonenergysystemintegratorsanddevelopers.

Alltechnologyproviders,industryandservicescustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopersaremembersoftheLDESCouncil.

Technologyproviders

5MembercountatthetimeofthereleaseofthisreportinNovember2022.

PAGE

7

PAGE

8

Industryandservicescustomers

Capitalproviders

Equipmentmanufacturers

Low-carbonenergysystemintegratorsanddevelopers

Executivesummary

Decarbonizingtheglobalenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.Torealizea1.5°Cscenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincrease

intotalelectricitydemandbythatyear.6Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-couplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.This,inadditiontothe

growingshareofrenewablesandelectrification,furtherincreasestheenergysystem’scom-plexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.

LDESoffersacleanflexibilitysolutiontosecurepowerandheatreliability.LDESencompassesarangeoftechnologiesthatcanstoreelectricalenergyinvariousformsforprolongedperiodsatacompetitivecostandatscale.Thesetechnologiescanthendischargeelectricalenergywhenneeded—overhours,days,orseasons—inordertofulfilllong-durationsystemflexibilityneedstoshifttheincreasingvariable,renewableenergysupplytomatchdemand.Thisreportbuildsonthe2021LDESCouncilNet-zeropowerreport

byfocusingontheroleofLDESinrealizingnet-zeropowerandheatwhileexpandingontherolethermalenergystorage(TES)canplayindecarbonizingheatapplications.

TESprovidesanLDESsolutiontoelectri-fyingandfirmingheat.Decarbonizingtheheatsectoriscrucialforrealizinganet-zeroenergysystemby2050,giventhatitrepresentsroughly45percentofallenergy-relatedemissionstoday.7TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariable

renewableenergysources.Inaddition,itcanoptimizeheatconsumptioninindustrial

processesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources(forexample,fromthermalsolar).

TEScanenablethecost-efficientelectri-ficationofmostheatapplications.TEScoversavarietyoftechnologiesthatcanaddressawiderangeofstoragedurations(fromintradaytoseasonal)andtemperatures(fromsubzeroto2,400°C).Accordingtothe2022LDESbenchmarkresults,TESenablescost-ef-ficientelectrificationanddecarbonizationofthemostwidelyusedheatapplications,namelysteamandhotair.Thebenchmarkresultsalsoindicatethatfirmingheatisverycost-efficientwhenthefinaldemandisheat.

SomeTEStechnologiesarealreadycommerciallyavailablewithvarious

easy-to-customizeuses.Todate,themostcommonlydeployedTEStechnologiesincludemedium-pressuresteam,withvariousappli-cations,includinginthechemicalsorfoodandbeverageindustries.Additionally,developingtechnologieswillexpandtheTESsolutionspacewithinnovativeconceptsandaddresstemperatureneedswellabove1,000°C.

TESbusinesscasesdemonstrateprofi-tabilityataninternalrateofreturn(IRR)of16to28percent,subjecttolocalmarketconditions.Theseincludeoptimalphysicalconfigurations(accesstocaptiverenewables,captiveheat,orgridelectricity)andmarketdesigns(includinglowgridfeesandtheremunerationofflexibility).ThebusinesscaseassessmentscoverawiderangeofrealisticTESusecases,namely:medium-pressuresteaminachemicalsplant(upto28percentIRR),districtheatingsuppliedbyapeakerplant(upto16percentIRR),high-pressuresteaminanaluminarefinery(upto16percentIRR),andco-generationinanoff-gridgreenhouse(upto22percentIRR).Allmarket-exposedbusiness

6“Netzeroby2050,aroadmapfortheglobalenergysector,”IEA,2021.

7Thebaselineincludesemissionsfromheating,industrialprocesses,transport,andotherenergysectoremissions.Itexcludespowergenerationemissions.

PAGE

9

PAGE

10

casesindicateasupportiveecosystemthatacknowledgesthevalueofflexibility,suchasancillaryservices,wouldlikelybecriticaltoensuringwidecommercialadoption.The

businesscasewithbehind-the-meterrenewablegenerationshowsthatTEScanalreadybecommerciallyfeasibleregardlessofexternalmarketconditions.

LDEStechnologiesareexpectedtobecomeincreasinglycost-competitiveasthemarketmatures.Theupdated2022powerLDES

costbenchmarksolidifiestheforecastthatLDEScostswilldeclineinthefollowingyears,suggestinga25to50percentoverallcapitalexpenditure(capex)reductionofpowerLDEStechnologiesby2040.Inaddition,the2022TEScostbenchmarkindicatesthatTEScapexisalsoexpectedtodeclineby2040,withanestimateddropofbetween5and30percentforpowercapexand15and70percentforenergystoragecapex.

AcasestudyontheportofRotterdamexemplifiestherelevanceofLDESfordecarbonizingenergyhubswhilecreatingsystemvalue.Thecasestudyrepresentsatypicalindustrialhubwithsignificantpowerandheatdemandon-site,whereacombination

ofTESandpowerLDEScanplayaroleindecarbonizingthesystem.InanindustriallocationliketheportofRotterdam,theneedforindustrialheatingcanfundamentallychangetheconfigurationforanet-zeroenergysystem.TEScanfirmthevariableoffshorewindsupplyinto

amorestablesupplyofcleanheatforindustrialheating,includinghigh-temperatureheating.

TEScoulddoubletheglobalLDEScapacitypotentialinacost-optimizednet-zeroenergypathwayinlinewitha1.5°Cscenario.Basedonintegratedsystemmodeling,TEScanexpandtheoverallinstalledcapacitypotentialofLDEStobetween2and8TWby2040(versus1to3TWwithoutTES),whichtranslatestoacumulativeinvestmentofUSD1.6trillionto

USD2.5trillion.TESenablesthisadditionalLDESopportunitybyprovidingacost-efficientalternativetodecarbonizingheatandhigh-tem-peratureheatingapplications.ThisisestimatedtoreducesystemcostsbyuptoUSD540billionperyearwhilecreatingbroadersystemvaluebyenablinganacceleratedrenewablesbuild-outandoptimizationofgridutilization.

CriticalsupportelementscouldhelpdrivemoreTESadoption.Asupportiveecosystemthatrewardsflexibilityandpromotesatech-nologicallylevelplayingfieldforflexibilitysolutionslikeLDESiscriticaltoacceleratingthescale-upofTES.Additionally,increasingawarenessandprovidingsupporttoderiskinitialinvestmentsispivotal.Businessleaders,policymakers,andinvestorshaveanimportantroletoplayinunlockingtheTESpotentialbyreducinglong-termuncertaintyandtherebyshapingthecost-optimizedpathwaytowardthenet-zeroenergysystemofthefuture.

Net-zeroheat

Power-to-heatHeat-to-power

LongDurationEnergyStoragetoaccelerateenergysystemdecarbonization

Thetransitiontonetzerorequiresanintegratedenergysystemperspective

LDES

Infra-

structure

Realizingacost-optimizedtransitiontonetzeroacrossallenergysectorsrequiressignificantdeploymentofrenewables,increasedinterconnectionsbetweenpower,heat,andhydrogen,andsupportinginfra-structure.Systemflexibilitywillbecriticaltosecuringenergysystemreliability

Power-to-hydrogenHydrogen-to-power

Power

Heatdecarbonizationiscriticalfornetzero,asitaccountsfor~45%ofenergy-relatedemissions

Hydrogen-to-heat

Hydro-gen

CHPwithhydrogenproductionanduse

Globalfinalenergyconsumptionbysector

Shareofglobalenergy-relatedCO2eemissions1

Machinery,appliances,lighting

Transportation

Industry

Buildings:heating

DistrictheatingBuildings:cooking

Heatingandcooling

20%

fromindustrialheat

10%

frombuildingsheat

Heat

Longdurationenergystorageenablesacost-optimizedpathwaytowardnetzero

Acost-optimizednet-zeropathwaycouldby2040resultin...

2?8TW

deployedLDES

capacity

USD1.7?3.6tr

cumulativeLDEScapex

investments

upto

USD540bn

systemsavingsperyear

1.Baselineexcludeselectricityemissions.

PAGE

11

Electric Heat

boiler pump

withTES withTES

withLi-ionbattery

withLi-ionbattery

ElectricboilerHeatpump

Biomassboiler

Gasboiler HydrogenwithCCS2 boiler

Gasboiler

15?25

25?35

Thermalenergystorage(TES)...

...comprisesawiderangeoftechnologies

2,400°C

<0°C

Storagetemperature

Months

Hours

Storagedurationusecase

SomeTEStechnologies

arealreadycommercially

available

R&D Pilots Commercially

available

Technicalmaturity

TESenableselectrificationofheatapplicationswithdifferenttemperatureanddurationneeds

...isacost-efficient24/7heatdecarbonizationsolution

Technologyequivalents

65?100 70?100

Levelizedcostofheat(steam)forselectedtechnologies1USD/MWh

40?65

45?65

45?70

30?60

TESmakesstoringheatmorecost-efficientthanstoringpowerforheatapplications

…canpresentattractivebusinesscasessubjecttolocalconditions.IRRsforselectedusecases

UpsidecaseBasecase

28%

6%

Chemicalsplant

22%

Off-gridgreenhouse

16%

0%

Districtheatingpeakerplant

16%

Aluminarefinery

TESbehind-the-meterbusinesscasescanbepositiveastherearenogridconnectionfees

...requiresenablerstodrivebroadadoption

Rewardvalueofflexibility

Reducedgridfees

Ancillarymarkets

Createatechnolo-gicallylevelplayingfieldacrossflexibilitysolutionsthrough

Regulations

Standards

Increaseaware-nessofTEStechnologies

Pilots

Demonstration

Plants

Deriskinitialinvestments

Subsidies

Guarantees

Costrangesreflectfuelprices(gas,electricity,biomass).IncludesCO2emissioncostsofUSD100/t.

Carboncaptureandstorage.

PAGE

13

Acronyms

Capex Capitalexpenditure

CCS Carboncaptureandstorage

CO2 Carbondioxide

CO2e Carbondioxideequivalent

EJ Exajoules

GHG Greenhousegas

GtCO2eq GigatonsofcarbondioxideequivalentGW Gigawatt

GWh Gigawatt-hour

Hz Hertz

IRR Internalrateofreturn

kW Kilowatt

kWh Kilowatt-hour

LCOE Levelizedcostofelectricity

LCOH Levelizedcostofheat

Li-ion Lithium-ion

LDES LongdurationenergystorageMPM McKinseyPowerModel

MW Megawatt

MWh Megawatt-hour

MWhth Megawatt-hourthermalMWth Megawattthermal

NPV Netpresentvalue

PV Photovoltaic

PPA Powerpurchaseagreement

RTE Round-tripefficiency

R&D Researchanddevelopment

TTF Titletransferfacility

TW Terawatt

TWh Terawatt-hour

TES Thermalenergystorage

T&D TransmissionanddistributionWACC Weightedaveragecostofcapital

1

TheroleofLDESinnet-zeroenergy

Decarbonizingtheenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.

Torealizea1.5°Cscenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincreaseintotalelectricitydemand

bythatyear.Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-couplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.

This,inadditiontothegrowingshareofrenewablesandelectrification,furtherincreasestheenergysystem’scomplexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.

PAGE

15

Anet-zeroenergysystemrequirescleanflexibilitysolutions

Achievingnet-zeroemissionsintheenergysectorby2050ispivotalforlimitingglobalwarmingto1.5oC.Tokeepglobalwarmingbelow1.5oCcomparedtopreindustriallevels,ascalledforintheParisAgreement,greenhousegas(GHG)emissionsneedtoreachnetzeroby2050.Theenergysectorcurrentlyaccountsforroughlythree-quartersofGHGemissionsandholdsthekeytomitigatingtheworsteffects

ofclimatechange.8Replacingpollutingfossilenergywithrenewableenergysourceslikewindorsolarandmeetingtheenergy-shiftingdemandwithLDESwillhelpsignificantlyreducecarbonemissionswhilecreatingareliableenergysystem.

Thegrowthofsolarandwindgenerationisincreasingthevariabilityoftheenergy

supplymixandtheneedforcleanflexibilitysolutionstosafeguardenergysystemreliability.Ascountriesdecarbonize,theglobalshareofrenewableenergysupplyisexpectedtogrowdramatically.Net-zerotransitionscenariosindicatearoughlythreefoldandfivefoldincreaseinrenewableenergysupply,withrenewablessupplyingupto

30and67percentofglobalenergyin2030and2050,respectively.Furthermore,electrificationisexpectedtoincrease,doublingtheelectricitydemandby2050.9Therefore,thereisagrowingneedforcleanflexibilitysolutionsthatbridgetherenewablessupply-and-demandgapwhilesecuringsystemreliability.EnsuringrenewableelectricitymatchesdemandwithLDEScanhelpprovidetheflexibility,securityofsupply,andresiliencyneededtomeetglobalnet-zerotargets.

Peak

solargeneration

Energyshifting

Industrialheatdemand

Definitionsofenergy

systemreliabilityandflexibility

Energysystemreliabilityistheabilityofenergysystemstodeliverenergyinthequantityandqualitydemandedbyconsumers.

Energysystemflexibilityistheabilityofenergysystemstorespondtosupply-and-demandvariationspromptlyandsupportsreliability.

LDESoffersacleanflexibilitysolutionthatcanacceleraterenewablesbuild-out

LDESprovidesenergysystemflexibility.LDESsolutionsenabletheshiftingofenergyfromtimesofhighsupplytotimesofhighdemand,therebyhelpingpreservesystembalanceandsecuringitsreliability.LDEScanbedeployedcompetitivelytostoreenergyforprolongedperiodsandsustainenergyprovisionformultiplehours,days,orweeks.Suchlong-durationflexibilityisexpectedtobecomeessentialtofirmsupplyastheshareofrenewableenergysupplyincreases.LDES

cancovervariousdurationsdrivenbytechnicalconsiderationsandeconomics.

LDEScanacceleratethebuild-outofrenewablesbyoptimizinginfrastructureutilization.Theenergy-shiftingcapabilityofLDEShasmultiplesystembenefits.First,itcouldreduceenergycurtailmentandrelatedopportunitycostsbyfacilitatingsupply-sideenergystorage.Forexample,theinitialmod-elingofanaluminarefineryusecaseindicatedthatLDEScouldreduceoverallgenerationcapacityneedsby15to30percent.Second,itcouldhelpimproveoverallgridutilizationthroughsupply-and-demand-sideenergy

storage,reducingstressonthegrid.Asaresult,LDEScanbedeployedacrosstheelectricitygrid(forexample,atcriticalcorridorsatcapac-ity)toacceleraterenewables’development.

Lastly,LDEScanprovideothersystembenefitslikestability,withsometechnologiesofferingserviceslikeinertiaprovisionorfrequencyregulation.

Noon Midnight

8UnitedNationsNetZeroCoalition.

9“Netzeroby2050,aroadmapfortheglobalenergysector,”IEA,2021.

LDEScansupportthesecurityofsupply

Theneedtoensureanaffordable,reliable,cleanenergysystemhasbeenheightenedbyrecentchallengesintheenergysector,whichhaveincreasedtheprominenceofenergysecurity

onglobalagendas.Europeisnowfacingelectricityandnaturalgaspricesthatareovertentimeshigherthanhistoricalaverages,drivenbymultiplefactorssuchasthewarinUkraineandtheriseinglobaldemandfollowingtheCOVID-19pandemic.10Globalgasmarketshavealsobeenaffected,causingUSelectricitypricestoincreasethreefoldbetween2020and2022.11

IncorporatingLDEScanhelpincreasethesecurityofsupplyandcreatenewusecasesforrenewableenergy.LDEScanalsounlocknewopportunitiesthatarenotthoroughlyaddressedbyshorter-durationstoragesolutions.Examplesinclude:helpingincreasetheshareofrenew-ablesintheenergymix,providingresiliencetounreliablegridsatlongdurations(likeatisolatedoroff-gridlocations),enablingcost-efficient24/7renewablepowerpurchaseagreements(PPAs),orprovidingstabilityservicestothegrid.Inaddition,TEScansupportnewheatingusecases,namelythewiderelectrificationofheat,reuseofwasteheat,demand-sidemanagement,andlowerrenewablescurtailment.

10DutchTTFGasFutures.

11U.S.EnergyInformationAdministration(EIA).

Therearedifferentoptionstoconsiderforenergysystemflexibility

Withintheelectricitysector,fiveflexibilityoptionscanhelpmatchsupplyanddemand:

Energystorage,includingLi-ionbatteriesanddeployableLDESsolutionssuchasclosedlooppumpedstorage

Dispatchablecapacitysuchashydropower

Renewableenergycurtailment

Transmissionanddistributiongridexpansions

Demand-sidemanagement

Furthermore,systemflexibilityisincreasinglyimportantinrespondingtomarketsupplyfluctuations.

Theheatsectorhasanalogouscleanflexi-bilitysolutionstotheelectricitysector,thoughwithclean-heat-specifictechnologies:

Thermalenergystorage

Dispatchablecapacitylikeclean-fuelboilers

Robustheatinginfrastructurelikedistrictheating

Integratingtheelectricityandheatsectorscanbecriticalinenablingcleanflexibility.Electricityandheatwerehistoricallyconnectedthroughheatenginesinconventionalgenerationplants.Goingforward,electricityandheatareexpectedtobecomemoreintegratedthroughhigheradoptionofpower-to-heattechnologies,suchasheatpumpsorelectricboilers,andrenewableheat-to-powertechnologies,likeconcentratedsolarpower.Theincreasedinterconnectednessofthesectorssupportstheirdecarbonizationandtheintegration

ofrenewables.Furthermore,solutionsthatenhancesectorintegration—likeTES—driveflexibilityby,forinstance,storingenergyattimesofoversupplyanddischargingheatattimesofundersupply.Giventhegrowinginterdepen-denciesofelectricityandheat,anintegratedperspectiveisbecomingrelevanttorealizinganet-zeroenergysystem.

16

PAGE

17

KEYTAKEAWAYS

?Astheshareofvariablerenewableenergygrowssteadily,thereisagreaterneedforcleanflexibilitysolutions,likeLDES,tosecuresystemreliability.

?LDESisessentialforkeepingglobalwarmingbelow1.5°Casitcanhelpacceleratethedevelopmentofrenewables.

?Theintegrationoftheenergysystemthroughsectorcouplingimprovesflexibility,securityofsupply,and,consequently,systemreliabilityandresiliency.

2

TESasanenablertodecarbonizingheat

Decarbonizingtheheatsectoriscrucialtorealizinganet-zeroenergysystemin2050,giventhat,excludingpower,itrepresentsabout45percent

ofallenergy-relatedemissionstoday.

TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariablerenewablesources.

Inaddition,itcanoptimizeheatconsumptioninindustrialprocessesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources.

PAGE

19

PAGE

22

Mostheatapplicationscanbedecarbonizedthroughelectrifi-cation

Heataccountsforabout45percentofenergy-relatedemissions.Heatingandcoolingusecasesaccountformorethan50percentofglobalenergyconsumptionacrossallsectorsandabout45percentof

globalenergy-relatedCO2emissions,excludingpower(10Gtin2019).Industrialapplicationsaccountforthelargestshareofheatconsump-

tion,at40percentoftotalheatdemand,andcompriseusecasesvaryingfromlow-tohigh-gradeheatingabove1,500°C.Buildingheatingandcoolingisalsoasignificantcontributorataround30percentoftotalheatdemand,12thoughtypicallyatlowertempera-turesaroundorbelow100°C.Lastly,heatingisusedforcookingaswellasdistrictheating(Exhibit2).

H

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論