下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
自由阻尼懸臂梁的振動頻率分析
由于結(jié)構(gòu)簡單、應(yīng)用方便、經(jīng)濟(jì),自由衰減懸臂梁被廣泛應(yīng)用于減少振動和噪聲結(jié)構(gòu)的工程領(lǐng)域。關(guān)于靜氣理論和實(shí)驗(yàn)分析的結(jié)果表明,許多關(guān)于靜氣模型的方程和實(shí)驗(yàn)分析的成果很少。在本研究中,基于漢分原理,我們計(jì)算了自由衰減梁的控制方程,然后根據(jù)模型疊加法和虛擬功原理,在集中力突然崩潰的情況下,自由衰減梁的動態(tài)反應(yīng)方程的分析解。1自由阻尼懸臂梁的數(shù)值模型采用直角坐標(biāo)系,X軸通過復(fù)合結(jié)構(gòu)的中性軸.圖1為自由阻尼懸臂梁的結(jié)構(gòu)圖.根據(jù)文獻(xiàn)可知,自由阻尼懸臂梁中性軸到基層形心軸的距離d=Evh2(h2+h1)/[2(Evh2+Eeh1)]?式中:Ev為阻尼層材料的彈性模量;Ee為基層材料的彈性模量.將自由阻尼懸臂梁結(jié)構(gòu)橫向位移近似的用彈性懸臂梁模態(tài)展開,w(x,t)=n∑i=1fi(t)Χi(x)?(1)式中懸臂梁橫向位移各階模態(tài)函數(shù)Χi(x)=cosh(kix)-cos(kix)-αi(sinh(kix)-sin(kix)),其中:ki為系數(shù),x為X軸上的長度變量,αi=cos(kiL)+cosh(kiL)sin(kiL)+sinh(kiL),k1L=1.875,k2L=4.694,k3L=7.854,kiL=(i-0.5)π(i=4,5??).阻尼層采用復(fù)常數(shù)模型,運(yùn)用漢密爾頓原理推導(dǎo)出自由阻尼懸臂梁的控制方程.自由阻尼懸臂梁的應(yīng)變能ˉU=12E1Ι1∫L0(?2w?x2)2dx+12E2Ι2∫L0(?2w?x2)2dx?(2)式中:E1為基層的彈性模量;I1為基層對復(fù)合結(jié)構(gòu)中性軸的截面慣性矩;I2為阻尼層對復(fù)合結(jié)構(gòu)中性軸的截面慣性矩;E2=Ev(1+iηv),ηv為阻尼層的損耗因子.自由阻尼懸臂梁的動能ˉV=12ρ1A1∫L0(?w?t)2dx+12ρ2A2∫L0(?w?t)2dx?(3)式中:ρ1為基層的密度;A1為基層的截面面積;ρ2為阻尼層的密度;A2為阻尼層的截面面積.把式(1)代入式(2)和式(3),可得{ˉU=12(E1Ι1+E2Ι2)n∑i=1n∑j=1Κijfi(t)fj(t);ˉV=12(ρ1A1+ρ2A2)n∑i=1n∑j=1Μij˙fi(t)˙fj(t)?(4)式中:Kij=∫L0Χ″i(x)Χ″j(x)dx;Mij=∫L0Χi(x)·Χj(x)dx.是梁的拉格朗日函數(shù),ˉL=ˉV-ˉU.拉格朗日方程為ddt(?ˉL?˙fi)-(?ˉL?fi)=0.(5)把式(4)代入式(5),得到自由阻尼懸臂梁的控制方程¨fi(t)+ω2ifi(t)=0?(6)式中ω2i=(E1I1+E2I2)Kii/[(ρ1A1+ρ2A2)Mii]為梁的各階固有頻率,顯然自由阻尼懸臂梁的ωi為虛數(shù).定義自由阻尼懸臂梁的頻率ω=√Re(ω2i).2初始位移響應(yīng)在自由阻尼懸臂梁的自由端作用一個集中力P0,當(dāng)P0突然撤掉時,計(jì)算其響應(yīng).當(dāng)懸臂梁自由端作用一個集中力P0時,用模態(tài)疊加方法模擬梁的初始撓度曲線函數(shù),梁的初始撓度曲線為w0(x)=n∑i=1biΧi(x).(7)此時自由阻尼懸臂梁處于彎曲位置時應(yīng)變能U=12(E1Ι1+E2Ι2)∫L0(?2w0?x2)2dx=12(E1Ι1+E2Ι2)n∑i=1b2iΚii.(8)考慮虛位移δbiΧi(x),根據(jù)虛位移原理可得Ρ0δbiΧi1=(?U/?bi)δbi,(9)式中Χi1表示x=x1處計(jì)算的Χi的值.把式(8)代入式(9)得bi=Ρ0Χi1/[(E1Ι1+E2Ι2)Κii].(10)假設(shè)梁有初始位移的自由振動的響應(yīng)wj(x)=n∑j=1AjΧj(x)exp[i(ωjt+φj)]?(11)式中Aj為未知系數(shù).再利用初始條件可得wj(x)=n∑j=1e-ηωjt/2bj[cos(ωjt)-η2sin(ωjt)].3尼層材料參數(shù)對自由振動頻率的影響計(jì)算自由阻尼懸臂板在集中力P0=10N突然撤掉時梁的響應(yīng).梁的長度L=0.4m,寬度b=0.03m.彈性層材料為鋁板,其材料參數(shù)為h1=0.004m,E1=7.1GPa,ρ1=2700kg/m3.阻尼層材料參數(shù)為:ρ2=1200kg/m3,G2=0.869MPa,泊松比μ2=0.4,ηv=0.8,h2=0.004m.其模態(tài)自由振動的頻率分別為:一階模態(tài)時34.45Hz;二階模態(tài)時215.02Hz;三階模態(tài)時602.11Hz;四階模態(tài)時1179.9Hz.利用此方法分別計(jì)算了在t=0時刻突然撤去P0時,彈性懸臂梁和自由阻尼懸臂梁的瞬態(tài)響應(yīng),結(jié)果分別見圖2和圖3.從圖2可以看出,理想的彈性懸臂梁的響應(yīng)具有明顯的周期性,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年教育培訓(xùn)項(xiàng)目投資與合作合同
- 設(shè)立分公司技術(shù)試驗(yàn)協(xié)議
- 多元化中學(xué)門衛(wèi)招聘協(xié)議
- 留學(xué)生合同范本
- 草場租賃合同:戶外健身中心
- 鄉(xiāng)鎮(zhèn)公務(wù)員聘用合同
- 旅游項(xiàng)目融資抵押借款協(xié)議書
- 電力施工設(shè)備租賃合同
- 駕校訓(xùn)練場駕駛培訓(xùn)租賃合同
- 醫(yī)院工程板房施工協(xié)議
- 國開(內(nèi)蒙古)2024年《創(chuàng)新創(chuàng)業(yè)教育基礎(chǔ)》形考任務(wù)1-3終考任務(wù)答案
- 營銷渠道和營銷渠道管理概述
- 夕會教案:養(yǎng)成課間文明的好習(xí)慣
- 精品在線開放課程建設(shè)與評價標(biāo)準(zhǔn)
- 自主研究開發(fā)項(xiàng)目計(jì)劃書
- 第二十章曲線積分-ppt課件
- 3Q模板IQOQPQ驗(yàn)證方案模版
- T∕CCOA 24-2020 棕櫚仁餅(粕)
- 聚乙烯天然氣管道施工技術(shù)交底(完整版)
- 小學(xué)四年級奧數(shù)-變化規(guī)律(一)
- 萬達(dá)集團(tuán)薪酬管理制度
評論
0/150
提交評論