下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022年安徽省中小學教育教學論文評選基于“結(jié)構(gòu)化”視角下的教學探索——以“命題與證明”(第1課時)為例摘要:初中數(shù)學教學不只是單純教授數(shù)學知識,更為重要的是培養(yǎng)學生的數(shù)學思維.傳統(tǒng)教學模式不能滿足學生形成系統(tǒng)的知識網(wǎng)的需求,而單元結(jié)構(gòu)化教學能夠解決此類問題.結(jié)構(gòu)化教學關注學情,著力發(fā)展學生的數(shù)學學科素養(yǎng),注重教學內(nèi)容的統(tǒng)籌與優(yōu)化,并在教學過程中突出數(shù)學的整體性、結(jié)構(gòu)性和關聯(lián)性.研究者以"命題與證明"第1課時為例,通過問題驅(qū)動式教學,按照建構(gòu)知識結(jié)構(gòu)、學習結(jié)構(gòu)和教法結(jié)構(gòu)的理念展開教學過程,以實現(xiàn)學生學習能力的提升.關鍵詞:結(jié)構(gòu)化教學,命題,教學探索.一、問題緣起于吸收新的知識,所以把腦海中的知識網(wǎng)絡化、結(jié)構(gòu)化是非常重要的.教師在初中數(shù)學力,實現(xiàn)數(shù)學知識的遷移,以最大限度地提高初中數(shù)學課堂教學效率與質(zhì)量.下面我以“命題與證明”(第1課時)為例,談談我在結(jié)構(gòu)化的教學思想引領下的教學過程與思考.二、內(nèi)容分析本節(jié)課是滬科版教材數(shù)學八年級上冊第十三章第二節(jié)“命題與證明”的第1課時,主要學習命題的有關知識.本章節(jié)是實驗幾何過渡到論證幾何的啟蒙章節(jié).本節(jié)課通過命題的結(jié)構(gòu)、互逆命題、命題的真假和反例等知識,將前面學習過的幾何性質(zhì)與后面即將學習的幾何證明聯(lián)系起來形成整體的結(jié)構(gòu),初步訓練學生的邏輯推理能力,為以后的證明奠定基礎.12022年安徽省中小學教育教學論文評選三、教學過程教學環(huán)節(jié)(一) 問題引入教師:在小學你們已經(jīng)知道了三角形內(nèi)角和是180°,其中一種研究方法是分別測量三個內(nèi)角的度數(shù),計算它們的和得出是180°.請同學們畫一個較大一點的?ABC,先分別測量三個內(nèi)角的度數(shù)(精確到十分位),再計算出內(nèi)角和.獨立完成后,小組討論以下問題:為什么測量的結(jié)果計算出的內(nèi)角和不恰好是180°?為什么會出現(xiàn)這種情況?又該如何說明三角形內(nèi)角和是180°呢?信其結(jié)果一定正確,因此,在觀察的基礎上還要再進行推理驗證.我們在進行推理驗證時,常常要對事情進行判斷.生長點,讓學生意識到推理的必要性,以及學習命題的必要性,從而揭示課題.接著教師安排如下層層遞進的問題,行云流水般地展開教學.教學環(huán)節(jié)(二) 探究新知問題1下列語句中,哪些語句對事情做出了判斷,哪些沒有?與同伴交流.①如果兩直線平行,那么同位角相等;②今天星期幾?③如果同位角相等,那么兩直線平行;④對頂角相等;⑤作△ABC;⑥有兩邊相等的三角形是等腰三角形;⑦如果|a|=|b|,那么a=b.式子)叫做命題.涇渭分明,不能模棱兩可;二是命題的句子要完整,對一件事的前因后果應敘述完整,從語法上講,它應是陳述句,不能是祈使句、疑問句或感嘆句.22022年安徽省中小學教育教學論文評選深對命題概念的理解.接著提出問題2:問題2比較剛才的幾個命題,從表述形式上看有什么不同?①如果兩直線平行,那么同位角相等;③如果同位角相等,那么兩直線平行;④對頂角相等;⑥有兩邊相等的三角形是等腰三角形;⑦如果|a|=|b|,那么a=b.教師:能否將命題④⑥改寫成“如果…,那么…”的形式?那么…”為關聯(lián)詞的命題的一般形式是“如果p,那么q”,或者說“若q”,其中p是這個命題的條件(或題設),q是這個命題的結(jié)論(或題斷).鞏固練習:指出以上每個命題的條件和結(jié)論.問題3觀察命題①③,它們的條件和結(jié)論又有什么特點?①如果兩直線平行,那么同位角相等;③如果同位角相等,那么兩直線平行;p,那么q”中的條件和結(jié)論互換,得到一個新命題“如果p”.我們把這兩個命題稱為互逆命題,其中一個叫做原命題,另一個叫做原命題的逆命題.鞏固練習:請寫出命題④⑥⑦的逆命題.問題4觀察命題④及其逆命題,它們是否正確?介紹真命題和假命題:正確的命題叫做真命題,錯誤的命題叫做假命題.教師:對于真命題,還需要經(jīng)過嚴格的證明,如何證明我們將在下一節(jié)開始學習.要說明一個命題是假命題,只要舉一個反例.我們把符合命題條件,但不符合命題結(jié)論的例子叫做反例.舉反例通常有三種形式:互為相反數(shù)的兩個數(shù)絕對值相等,但這兩個數(shù)不一定相等,所以是假命題.32022年安徽省中小學教育教學論文評選可得∠1=∠2,這里∠1與∠2不是對頂角.教學環(huán)節(jié)(三) 鞏固新知1.閱讀下列命題,完成下面的問題.①同旁內(nèi)角互補,兩直線平行;②同位角相等;③若ab>0,則a,b都是正數(shù).(1)將上面的命題改寫成“如果……那么……的形式,并說出這些命題的條件和結(jié)論;(2)寫出它們的逆命題;(3)判斷命題的真假,如果是假命題,請舉一個反例.教學環(huán)節(jié)(四) 課堂小結(jié)方法?前后知識有什么聯(lián)系?老師帶大家一起進行總結(jié).本課總結(jié)框架圖:小結(jié)幫助學生認識本節(jié)課的研究過程,知道概念課的探究策略.同時歸納本節(jié)課所到已有的知識結(jié)構(gòu)中.板書設計:42022年安徽省中小學教育教學論文評選四、教學反思本教學設計先回顧三角形內(nèi)角和是180°的探究歷程,旨在說明證明的必要性,再精選七個句子,通過觀察、比較引導學生得出命題的概念;然后對命題進行對比分析,引出命題結(jié)構(gòu):條件和結(jié)論;通過比較兩個命題的條件和結(jié)論,介紹原命題和逆命題;(后續(xù)學習),假命題需要舉出反例.就是指證明對象是什么?如何分析它?“知識到哪里去”就是指后續(xù)的如何證明命題?本課設計既交待了為什么要證明,又指明后續(xù)對真命題證明的學習任務,重點介紹證明的對象“命題”,包括命題的定義、結(jié)構(gòu)、類型、真假等內(nèi)容,使學生對命題與證明相關知識的內(nèi)在聯(lián)系有一個清晰的認識.教無定法.我這樣處理,是基于對滬科版教材的理解,基于對學生已有知識、已有經(jīng)驗了解的基礎上進行的教學設計.這樣的教學過程能讓學生自然地理解命題的概念,中培養(yǎng)學生的數(shù)學抽象、直觀想象、邏輯推理、數(shù)學建模等素養(yǎng).參考文獻[1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024適用型貸款利息合同書樣本版
- 2025年度彩色印刷設備升級改造合同3篇
- 2024年度城市基礎設施建設項目合同
- 二零二五年度綠色能源開發(fā)項目承包合同范本3篇
- 2025年度航空航天零部件定制設計與運輸服務合同3篇
- 2024物業(yè)委托經(jīng)營管理合同
- 2025年水果種植基地與冷鏈物流公司合作合同3篇
- 二零二五版科技型企業(yè)貸款合同中的物權(quán)擔保與研發(fā)成果3篇
- 2025年蔬菜廢棄物資源化利用合作合同3篇
- 二零二五年版市政工程招標投標合同模板3篇
- 物業(yè)民法典知識培訓課件
- 2023年初中畢業(yè)生信息技術中考知識點詳解
- 2024-2025學年山東省德州市高中五校高二上學期期中考試地理試題(解析版)
- 《萬方數(shù)據(jù)資源介紹》課件
- 麻風病病情分析
- 《急診科建設與設備配置標準》
- 第一章-地震工程學概論
- TSGD7002-2023-壓力管道元件型式試驗規(guī)則
- 2024年度家庭醫(yī)生簽約服務培訓課件
- 建筑工地節(jié)前停工安全檢查表
- 了不起的狐貍爸爸-全文打印
評論
0/150
提交評論