2023-2024學(xué)年安徽省舒城桃溪中學(xué)數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第1頁
2023-2024學(xué)年安徽省舒城桃溪中學(xué)數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第2頁
2023-2024學(xué)年安徽省舒城桃溪中學(xué)數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第3頁
2023-2024學(xué)年安徽省舒城桃溪中學(xué)數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第4頁
2023-2024學(xué)年安徽省舒城桃溪中學(xué)數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年安徽省舒城桃溪中學(xué)數(shù)學(xué)高二上期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與曲線相切于點,則()A. B.C. D.2.若存在過點(0,-2)的直線與曲線和曲線都相切,則實數(shù)a的值是()A.2 B.1C.0 D.-23.在拋物線上,橫坐標(biāo)為4的點到焦點的距離為5,則p的值為()A. B.2C.1 D.44.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關(guān)于坐標(biāo)原點的對稱點為,且,,則橢圓方程為()A. B.C. D.5.已知平面的一個法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥6.南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個球,第二層有3個球,第三層有6個球,…,則第十層球的個數(shù)為()A.45 B.55C.90 D.1107.已知等差數(shù)列的前項和為,,,,則的值為()A. B.C. D.8.某校高二年級統(tǒng)計了參加課外興趣小組的學(xué)生人數(shù),每人只參加一類,數(shù)據(jù)如下表:學(xué)科類別文學(xué)新聞經(jīng)濟政治人數(shù)400300100200若從參加課外興趣小組的學(xué)生中采用分層抽樣的方法抽取50名參加學(xué)習(xí)需求的問卷調(diào)查,則從文學(xué)、新聞、經(jīng)濟、政治四類興趣小組中抽取的學(xué)生人數(shù)分別為()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,109.?dāng)?shù)列1,,,的一個通項公式可以是()A. B.C. D.10.已知點P在拋物線上,點Q在圓上,則的最小值為()A. B.C. D.11.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.12.已知向量,,且,則值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知A(1,3),B(5,-2),點P在x軸上,則使|AP|-|BP|取最大值的點P的坐標(biāo)是________14.某位同學(xué)參加物理、化學(xué)、政治科目的等級考,依據(jù)以往成績估算該同學(xué)在物理、化學(xué)、政治科目等級中達的概率分別為假設(shè)各門科目考試的結(jié)果互不影響,則該同學(xué)等級考至多有1門學(xué)科沒有獲得的概率為___________.15.已知直線和直線垂直,則實數(shù)___________.16.已知為等比數(shù)列的前n項和,若,,則_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.18.(12分)已知等比數(shù)列的公比為,前項和為,,,(1)求(2)在平面直角坐標(biāo)系中,設(shè)點,直線的斜率為,且,求數(shù)列的通項公式19.(12分)已知橢圓一個頂點恰好是拋物線的焦點,橢圓C的離心率為.(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標(biāo)為2的點P,若橢圓C上有兩個點A,B使得的平分線垂直于坐標(biāo)軸,且點B與點A的橫坐標(biāo)之差為,求直線AP的方程.20.(12分)設(shè)等差數(shù)列的前項和為,為各項均為正數(shù)的等比數(shù)列,且,,再從條件①:;②:;③:這三個條件中選擇一個作為已知,解答下列問題:(1)求和的通項公式;(2)設(shè),數(shù)列的前項和為,求證:21.(12分)已知斜率為的直線與橢圓:交于,兩點(1)若線段的中點為,求的值;(2)若,求證:原點到直線的距離為定值22.(10分)已知為等差數(shù)列,前n項和為,數(shù)列是首項為1的等比數(shù)列,,,.(1)求和的通項公式;(2)求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】直線與曲線相切于點,可得求得的導(dǎo)數(shù),可得,即可求得答案.【詳解】直線與曲線相切于點將代入可得:解得:由,解得:.可得,根據(jù)在上,解得:故故選:A.【點睛】本題考查了根據(jù)切點求參數(shù)問題,解題關(guān)鍵是掌握函數(shù)切線的定義和導(dǎo)數(shù)的求法,考查了分析能力和計算能力,屬于中檔題.2、A【解析】在兩曲線上設(shè)切點,得到切線,又因為(0,-2)在兩條切線上,列方程即可.【詳解】的導(dǎo)函數(shù)為,的導(dǎo)函數(shù)為,若直線與和的切點分別為(,),,∴過(0,-2)的直線為、,則有,可得故選:A.3、B【解析】由方程可得拋物線的焦點和準(zhǔn)線,進而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開口向右,焦點坐標(biāo),,準(zhǔn)線方程,由拋物線的定義可得拋物線上橫坐標(biāo)為4的點到準(zhǔn)線的距離等于5,即,解之可得.故選:B.4、C【解析】連結(jié),設(shè),則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關(guān)鍵點睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時,關(guān)鍵是求解基本量,,.5、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因為,所以,所以故選:A6、B【解析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達出來,第層有個球.【詳解】根據(jù)規(guī)律,可以得知:第一層有個球;第二層有個球;第三層有個球,則根據(jù)規(guī)律可知:第層有個球設(shè)第層的小球個數(shù)為,則有:故第十層球的個數(shù)為:故選:7、A【解析】由可求得,利用可構(gòu)造方程求得.【詳解】,,,,,解得:.故選:A.8、D【解析】利用分層抽樣的等比例性質(zhì)求抽取的樣本中所含各小組的人數(shù).【詳解】根據(jù)分層抽樣的等比例性質(zhì)知:文學(xué)小組抽取人數(shù)為人;新聞小組抽取人數(shù)為人;經(jīng)濟小組抽取人數(shù)為人;政治小組抽取人數(shù)為人;故選:D.9、A【解析】根據(jù)各項的分子和分母特征進行求解判斷即可.【詳解】因為,所以該數(shù)列的一個通項公式可以是;對于選項B:,所以本選項不符合要求;對于選項C:,所以本選項不符合要求;對于選項D:,所以本選項不符合要求,故選:A10、C【解析】先計算拋物線上的點P到圓心距離的最小值,再減去半徑即可.【詳解】設(shè),由圓心,得,∴時,,∴故選:C.11、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.12、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先求得點A關(guān)于x軸的對稱點,然后數(shù)形結(jié)合結(jié)合直線方程求解點P的坐標(biāo)即可.【詳解】點A(1,3)關(guān)于x軸的對稱點為A′(1,-3),如圖所示,連接A′B并延長交x軸于點P,即為所求直線A′B的方程是y+3=(x-1),即.令y=0,得x=13則點P的坐標(biāo)是.【點睛】本題主要考查直線方程的應(yīng)用,最值問題的求解,等價轉(zhuǎn)化的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.14、【解析】考慮3門或者2門兩種情況,計算概率得到答案.【詳解】.故答案為:.15、【解析】根據(jù)兩條直線相互垂直的條件列方程,解方程求得m的值.【詳解】由于兩條直線垂直,故,解得.故答案為:.16、30【解析】根據(jù)等比數(shù)列性質(zhì)得,,也成等比,即可求得結(jié)果.【詳解】由等比數(shù)列的性質(zhì)可知,,,構(gòu)成首項為10,公比為1的等比數(shù)列,所以【點睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對函數(shù)求導(dǎo),由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,結(jié)合方程的根與系數(shù)關(guān)系可求,(2)由(1)可求,然后結(jié)合導(dǎo)數(shù)可判斷函數(shù)的單調(diào)性,進而可求函數(shù)的最值.【詳解】解:(1)=3ax2+2bx﹣3,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,則,解可得a,b=-1,(2)由(1),易得f(x)在,單調(diào)遞增,在上單調(diào)遞減,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【點睛】本題考查利用極值求函數(shù)的參數(shù),以及利用導(dǎo)數(shù)求函數(shù)的最值問題,屬于中檔題18、(1),;(2),【解析】(1)設(shè)出等比數(shù)列的首項和公比,根據(jù)已知條件列出關(guān)于的方程組,由此求解出的值,則通項公式可求;(2)根據(jù)題意表示出斜率關(guān)系,然后采用累加法求解出的通項公式.【詳解】(1)因為等比數(shù)列的公比為,,,由已知,,得,解得或(舍),所以,,由得,所以所以,(2)由直線的斜率為,得,即,由,,,,,可得,所以,當(dāng)時也滿足,所以,19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達定理可得A點坐標(biāo),同理可得B點坐標(biāo),結(jié)合橫坐標(biāo)之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點為,則橢圓C的一個頂點為,即.由,解得.∴橢圓C的標(biāo)準(zhǔn)方程是;(Ⅱ)由題可知點,設(shè)直線AP的斜率為k,由題意知,直線BP的斜率為,設(shè),,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點,∴,即.把換成,得.∴,解得,當(dāng)時,直線BP的方程為,經(jīng)驗證與橢圓C相切,不符合題意;當(dāng)時,直線BP的方程為,符合題意.∴直線AP得方程為.【點睛】關(guān)鍵點點睛:兩條直線關(guān)于直線對稱,兩直線的傾斜角互補,斜率互為相反數(shù).20、(1)an=n,bn=(2)證明見解析【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,由等差數(shù)列和等比數(shù)列的通項公式及前n項和公式,列出方程組求解即可得答案;(2)求出,利用裂項相消求和法求出前項和為,即可證明【小問1詳解】解:設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,選①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,則an=1+n﹣1=n,bn=;選②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,則an=1+n﹣1=n,bn=;選③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,則an=1+n﹣1=n,bn=;小問2詳解】證明:由(1)知,,,所以21、(1);(2)證明見解析.【解析】(1)設(shè)出兩點的坐標(biāo),利用點差法即可求出的值;(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,寫韋達;根據(jù),求出,從而可證明原點到直線的距離為定值【小問1詳解】設(shè),則,,兩式相減,得,即,所以,即,又因為線段的中點為,所以,即;【小問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論