![2023-2024學(xué)年北京市西城13中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁](http://file4.renrendoc.com/view/507eed9f2a84369277bd34262c94874b/507eed9f2a84369277bd34262c94874b1.gif)
![2023-2024學(xué)年北京市西城13中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁](http://file4.renrendoc.com/view/507eed9f2a84369277bd34262c94874b/507eed9f2a84369277bd34262c94874b2.gif)
![2023-2024學(xué)年北京市西城13中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁](http://file4.renrendoc.com/view/507eed9f2a84369277bd34262c94874b/507eed9f2a84369277bd34262c94874b3.gif)
![2023-2024學(xué)年北京市西城13中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁](http://file4.renrendoc.com/view/507eed9f2a84369277bd34262c94874b/507eed9f2a84369277bd34262c94874b4.gif)
![2023-2024學(xué)年北京市西城13中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁](http://file4.renrendoc.com/view/507eed9f2a84369277bd34262c94874b/507eed9f2a84369277bd34262c94874b5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年北京市西城13中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.△ABC的兩個頂點坐標(biāo)A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.2.拋物線的準(zhǔn)線方程是()A. B.C. D.3.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假4.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)且的點的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點,為橢圓短軸的端點,,分別為橢圓的左右焦點,動點滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.5.已知一質(zhì)點的運動方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時速度為()A. B.C. D.6.在等差數(shù)列中,為其前項和,若.則()A. B.C. D.7.若,,且,則()A. B.C. D.8.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.9.一直線過點,則此直線的傾斜角為()A.45° B.135°C.-45° D.-135°10.在數(shù)列中,已知,則“”是“是單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.若,則圖像上的點的切線的傾斜角滿足()A.一定為銳角 B.一定為鈍角C.可能為 D.可能為直角12.在正方體中,AC與BD的交點為M.設(shè)則下列向量與相等的向量是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦距為____________14.達?芬奇認為:和音樂一樣,數(shù)學(xué)和幾何“包含了宇宙的一切”,從年輕時起,他就本能地把這些主題運用在作品中,布達佩斯的伊帕姆維澤蒂博物館收藏的達?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達?芬奇方磚形成圖2的組合,這個組合表達了圖3所示的幾何體.若圖3中每個正方體的邊長為1,則點到直線的距離是__________.15.設(shè)實數(shù)、滿足約束條件,則的最小值為___________.16.設(shè)拋物線C:的焦點為F,準(zhǔn)線l與x軸的交點為M,P是C上一點,若|PF|=5,則|PM|=__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,,且(1)求證:數(shù)列是等差數(shù)列,并求出;(2)數(shù)列前項和為,求18.(12分)已知的展開式中,只有第6項的二項式系數(shù)最大(1)求n的值;(2)求展開式中含的項19.(12分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題20.(12分)已知拋物線的準(zhǔn)線與軸的交點為.(1)求的方程;(2)若過點的直線與拋物線交于,兩點.請判斷是否為定值,若是,求出該定值;若不是,請說明理由.21.(12分)已知橢圓的右焦點為F(,0),且點M(-,)在橢圓上.(1)求橢圓的方程;(2)直線l過點F,且與橢圓交于A,B兩點,過原點O作l的垂線,垂足為P,若,求λ的值.22.(10分)如圖甲是由正方形,等邊和等邊組成的一個平面圖形,其中,將其沿,,折起得三棱錐,如圖乙.(1)求證:平面平面;(2)過棱作平面交棱于點,且三棱錐和的體積比為,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎(chǔ)題.2、D【解析】將拋物線的方程化為標(biāo)準(zhǔn)方程,可得出該拋物線的準(zhǔn)線方程.【詳解】拋物線的標(biāo)準(zhǔn)方程為,則,可得,因此,該拋物線的準(zhǔn)線方程為.故選:D.3、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因為成立,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.4、A【解析】由題可得動點M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A5、C【解析】求出即得解.【詳解】解:由題意得,故質(zhì)點在第1秒末的瞬時速度為.故選:C6、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.7、A【解析】由于對數(shù)函數(shù)的存在,故需要對進行放縮,結(jié)合(需證明),可放縮為,利用等號成立可求出,進而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當(dāng)且僅當(dāng),等號成立.所以,當(dāng)且僅當(dāng)時,等號成立,又,所以,即,所以,又,所以,,故故選:A8、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷9、A【解析】根據(jù)斜率公式求得直線的斜率,得到,即可求解.【詳解】設(shè)直線的傾斜角為,由斜率公式,可得,即,因為,所以,即此直線的傾斜角為.故選:A.10、C【解析】分別求出當(dāng)、“是單調(diào)遞增數(shù)列”時實數(shù)的取值范圍,利用集合的包含關(guān)系判斷可得出結(jié)論.【詳解】已知,若,即,解得.若數(shù)列是單調(diào)遞增數(shù)列,對任意的,,即,所以,對任意的恒成立,故,因此,“”是“是單調(diào)遞增數(shù)列”充要條件.故選:C.11、C【解析】求出導(dǎo)函數(shù),判斷導(dǎo)數(shù)的正負,從而得出結(jié)論【詳解】,時,,遞減,時,,遞增,而,所以切線斜率可能為正數(shù),也可能為負數(shù),還可以為0,則傾斜角可為銳角,也可為鈍角,還可以為,當(dāng)時,斜率不存在,而存在,則不成立.故選:C12、C【解析】根據(jù)空間向量的運算法則,推出的向量表示,可得答案.【詳解】,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的方程求出,再求焦距的值.【詳解】因為雙曲線方程為,所以,.雙曲線的焦距為.故答案為:.14、【解析】根據(jù)題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據(jù)題意,延長交于點,連接,如下所示:在△中,容易知:;同理,,滿足,設(shè)點到直線的距離為,由等面積法可知:,解得,即點到直線的距離是.故答案為:.15、2【解析】畫出不等式組對應(yīng)的可行域,平移動直線后可得目標(biāo)函數(shù)的最小值.【詳解】不等式組對應(yīng)的可行域如圖所示:將初始直線平移至點時,可取最小值,由可得,故,故答案為:2.16、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標(biāo),進而得解.【詳解】由拋物線的方程可得焦點,準(zhǔn)線,由題意可得,設(shè),有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)利用等差數(shù)列的定義可證是等差數(shù)列,利用等差數(shù)列的通項公式可求.(2)利用錯位相減法可求.【小問1詳解】因為,是以為首項,為公差的等差數(shù)列,,.【小問2詳解】,,,.18、(1)10;(2);【解析】(1)利用二項式系數(shù)的性質(zhì)即可求出的值;(2)求出展開式的通項公式,然后令的指數(shù)為即可求解【小問1詳解】∵的展開式中,只有第6項的二項式系數(shù)最大,∴展開后一共有11項,則,解得;【小問2詳解】二項式的展開式的通項公式為,令,解得,∴展開式中含的項為19、(1)(2)【解析】首先用列舉法,求得甲、乙兩人各抽一題的所有可能情況.(1)根據(jù)上述分析,分別求得“甲抽到判斷題,乙抽到選擇題(2)根據(jù)上述分析,求得“甲、乙兩人都抽到判斷題”的概率,根據(jù)對立事件概率計算公司求得“甲、乙兩人中至少有一人抽到選擇題【詳解】把3個選擇題因此基本事件的總數(shù)為.(1)記“甲抽到選擇題(2)記“甲、乙兩人至少有一人抽到選擇題【點睛】本小題主要考查互斥事件概率計算,考查對立事件,屬于基礎(chǔ)題.20、(1)(2)是定值,定值為【解析】(1)由拋物線的準(zhǔn)線求標(biāo)準(zhǔn)方程;(2)直線與拋物線相交求定值,解聯(lián)立方程消未知數(shù),利用韋達定理,求線段長,再求它們的倒數(shù)的平方和.【小問1詳解】由題意,可得,即,故拋物線的方程為.【小問2詳解】為定值,且定值是.下面給出證明.證明:設(shè)直線的方程為,,,聯(lián)立拋物線有,消去得,則,又,.得因此為定值,且定值是.21、(1)(2)【解析】(1)求得,的值即可確定橢圓方程;(2)分類討論直線的斜率存在和斜率不存在兩種情況即可確定為定值【小問1詳解】由題意知:根據(jù)橢圓的定義得:,即,所以橢圓的標(biāo)準(zhǔn)方程為【小問2詳解】當(dāng)直線的斜率不存在時,的方程是此時,所以當(dāng)直線的斜率存在時,設(shè)直線的方程為,,,,由可得顯然△,則,因為,所以所以,此時綜上所述,為定值22、(1)證明見解析;(2).【解析】(1)取的中點為,連接,,證明,,即證平面,即證得面面垂直;(2)建立如圖空間直角坐標(biāo)系,寫出對應(yīng)點的坐標(biāo)和向量的坐標(biāo),再計算平面法向量,利用所求角的正弦為即得結(jié)果.【詳解】(1)證明:如圖,取的中點為,連接,.∵,∴.∵,,∴,同理.又,∴,∴.∵,,平面,∴平面.又平面,∴平面平面;(2)解:如圖建立空間直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年馬達墊圈項目可行性研究報告
- 2021-2026年中國心血管導(dǎo)管行業(yè)市場全景調(diào)研及投資規(guī)劃建議報告
- 2025秋部編版二年級道德與法治課題研究計劃
- 2025年中國汽車配電盒行業(yè)市場發(fā)展現(xiàn)狀及投資方向研究報告
- 2024-2030年中國牙齒矯正設(shè)備行業(yè)市場調(diào)查研究及投資前景展望報告
- 2025年中國酒文化行業(yè)市場運行態(tài)勢及投資戰(zhàn)略咨詢研究報告
- 2025年孚瑞爾項目投資可行性研究分析報告
- 旅游行業(yè)合同管理服務(wù)質(zhì)量措施
- 2021-2026年中國魚肝油市場調(diào)查研究及行業(yè)投資潛力預(yù)測報告
- 2025年中棉茄克項目投資可行性研究分析報告
- 陜西省2024年中考語文真題試卷【附答案】
- 2024年吉林省中考語文真題版有答案
- 中國歷代政治得失-課件
- 課件:森林的基本概念
- 高速公路養(yǎng)護培訓(xùn)
- 如何在小學(xué)語文教學(xué)中落實單元語文要素
- 2024年演出經(jīng)紀(jì)人考試必背1000題附答案(黃金題型)
- 安全員繼續(xù)教育考試題庫1000道附參考答案(完整版)
- (2024年)保安培訓(xùn)圖文課件
- 專題16.7 二次根式章末八大題型總結(jié)(拔尖篇)-八年級數(shù)學(xué)下冊(人教版)(解析版)
- 如何提高調(diào)查研究能力
評論
0/150
提交評論