2023-2024學年甘肅省平涼市靜寧縣一中高二數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
2023-2024學年甘肅省平涼市靜寧縣一中高二數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
2023-2024學年甘肅省平涼市靜寧縣一中高二數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
2023-2024學年甘肅省平涼市靜寧縣一中高二數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
2023-2024學年甘肅省平涼市靜寧縣一中高二數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省平涼市靜寧縣一中高二數(shù)學第一學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設點關于坐標原點的對稱點是B,則等于()A.4 B.C. D.22.已知拋物線C:,焦點為F,點到在拋物線上,則()A.3 B.2C. D.3.某城市2017年的空氣質量狀況如下表所示:污染指數(shù)3060100110130140概率其中污染指數(shù)時,空氣質量為優(yōu);時,空氣質量為良;時,空氣質量為輕微污染,該城市2017年空氣質量達到良或優(yōu)的概率為()A. B.C. D.4.過點與直線平行的直線的方程是()A. B.C. D.5.兩圓和的位置關系是()A.內切 B.外離C.外切 D.相交6.用數(shù)學歸納法時,從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.7.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)8.在數(shù)列中,若,,則()A.16 B.32C.64 D.1289.設分別為圓和橢圓上的點,則兩點間的最大距離是A. B.C. D.10.已知實數(shù)a,b,c,若a>b,則下列不等式成立的是()A B.C. D.11.已知空間向量,,則()A. B.C. D.12.已知F是雙曲線C:的一個焦點,點P在C的漸近線上,O是坐標原點,,則的面積為()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓:和圓:,動圓M同時與圓及圓外切,則動圓的圓心M的軌跡方程為______.14.若點P為雙曲線上任意一點,則P滿足性質:點P到右焦點的距離與它到直線的距離之比為離心率e,若C的右支上存在點Q,使得Q到左焦點的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______15.過拋物線:的焦點的直線交于,兩點,若,則線段中點的橫坐標為______16.已知,用割線逼近切線的方法可以求得___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓E:的離心率,且右焦點到直線的距離為.(1)求橢圓的標準方程;(2)四邊形的頂點在橢圓上,且對角線,過原點,若,證明:四邊形的面積為定值.18.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.19.(12分)在一次重大軍事聯(lián)合演習中,以點為中心的海里以內海域被設為警戒區(qū)域,任何船只不得經過該區(qū)域.已知點正北方向海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東,且與點相距海里的位置,經過小時又測得該船已行駛到位于點北偏東,且與點相距海里的位置(1)求該船的行駛速度(單位:海里/小時);(2)該船能否不改變方向繼續(xù)直線航行?請說明理由20.(12分)已知,(1)當時,求函數(shù)的單調遞減區(qū)間;(2)當時,,求實數(shù)a的取值范圍21.(12分)在平面直角坐標系中,已知圓,點P在圓上,過點P作x軸的垂線,垂足為是的中點,當P在圓M上運動時N形成的軌跡為C(1)求C的軌跡方程;(2)若點,試問在x軸上是否存在點M,使得過點M的動直線交C于兩點時,恒有?若存在,求出點M的坐標;若不存在,請說明理由22.(10分)某市對排污水進行綜合治理,征收污水處理費,系統(tǒng)對各廠一個月內排出的污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數(shù)關系式;(2)求排放污水150噸的污水處理費用.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出點關于坐標原點的對稱點是B,再利用兩點之間的距離即可求得結果.【詳解】點關于坐標原點的對稱點是故選:A2、D【解析】利用拋物線的定義求解.【詳解】因為點在拋物線上,,解得,利用拋物線的定義知故選:D3、A【解析】根據(jù)互斥事件的和的概率公式求解即可.【詳解】由表知空氣質量為優(yōu)的概率是,由互斥事件的和的概率公式知,空氣質量為良的概率為,所以該城市2017年空氣質量達到良或優(yōu)的概率,故選:A【點睛】本題主要考查了互斥事件,互斥事件和的概率公式,屬于中檔題.4、A【解析】根據(jù)題意利用點斜式寫出直線方程即可.【詳解】解:過點的直線與直線平行,,即.故選:A.5、A【解析】計算出圓心距,利用幾何法可判斷兩圓的位置關系.【詳解】圓的圓心坐標為,半徑為,圓的圓心坐標為,半徑為,兩圓圓心距為,則,因此,兩圓和內切.故選:A.6、C【解析】分別求出n=k時左端的表達式,和n=k+1時左端的表達式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當n=k時,左端=(k+1)(k+2)(k+3)…(2k),當n=k+1時,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點睛】本題考查用數(shù)學歸納法證明等式,分別求出n=k時左端的表達式和n=k+1時左端的表達式,是解題的關鍵7、C【解析】求出函數(shù)的導函數(shù),通過在某點處的導數(shù)為該點處切線的斜率,求出切線方程,并且判斷出極值,通過結合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【詳解】,,令,得,所以,因為,,所以曲線在點處的切線方程為,故A錯;當時,存在使,且當時,;當時,,即有極小值,無極大值,故B錯誤;設為的極值點,則,且,所以,,當時,;當時,,故C正確,D錯誤.8、C【解析】根據(jù)題意,為等比數(shù)列,用基本量求解即可.【詳解】因為,故是首項為2,公比為2的等比數(shù)列,故.故選:C9、D【解析】轉化為圓心到橢圓上點的距離的最大值加(半徑).【詳解】設,圓心為,則,當時,取到最大值,∴最大值為故選:D.【點睛】本題考查圓上點與橢圓上點的距離的最值問題,解題關鍵是圓上的點轉化為圓心,利用圓心到動點距離的最值加(或減)半徑得出結論10、C【解析】根據(jù)不等式的性質逐一分析即可得出答案.【詳解】解:對于A,因為a>b,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若a>b,又,所以,故C正確;對于D,當時,,故D錯誤.故選:C.11、C【解析】直接利用向量的坐標運算法則求解即可【詳解】因為,,所以,故選:C12、B【解析】根據(jù)給定條件求出,再利用余弦定理求出即可計算作答.【詳解】雙曲線C:中,,其漸近線,它與x軸的夾角為,即,在中,,由余弦定理得:,即,整理得:,解得,所以面積為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)動圓同時與圓及圓外切,即可得到幾何關系,再結合雙曲線的定義可得動點的軌跡方程.【詳解】由題,設動圓的半徑為,圓的半徑為,圓的半徑為,當動圓與圓,圓外切時,,,所以,因為圓心,,即,又根據(jù)雙曲線的定義,得動點的軌跡為雙曲線的上支,其中,,所以,則動圓圓心的軌跡方程是;故答案為:14、【解析】若Q到的距離為有,由題設有,結合雙曲線離心率的性質,即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點睛】關鍵點點睛:若Q到的距離為,根據(jù)給定性質有Q到左、右焦點的距離分別為、,再由雙曲線性質及已知條件列不等式組求離心率范圍.15、【解析】根據(jù)題意,作出拋物線的簡圖,求出拋物線的焦點坐標以及準線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點為,準線為,分別過,作準線的垂線,垂足為,,則有過的中點作準線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標為故答案為:16、【解析】根據(jù)導數(shù)的定義直接計算即可【詳解】因為,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件列出關于a、b、c的方程組求解即可;(2)設,代入,利用韋達定理,通過,結合,轉化求解即可【小問1詳解】【小問2詳解】設,設,代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴為定值18、(1)證明見解析;(2).【解析】(1)設為中點,連接,根據(jù),證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標系,計算各點坐標,計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標系,則,,,,,,由,,,即,∴,,,設為平面的法向量,則由,令,得,,∴,設為平面的法向量,則由,令,得,,∴,設二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力,建立空間直角坐標系是解題的關鍵.19、(1)海里/小時;(2)該船要改變航行方向,理由見解析.【解析】(1)設一個單位為海里,建立以為坐標原點,正東、正北方向分別為、軸的正方向建立平面直角坐標系,計算出,即可求得該船的行駛速度;(2)求出直線的方程,計算出點到直線的距離,可得出結論.【小問1詳解】解:設一個單位為海里,建立以為坐標原點,正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標系,則坐標平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時.【小問2詳解】解:直線的斜率為,所以直線的方程為,即,所以點到直線的距離為,所以直線會與以為圓心,以個單位長為半徑的圓相交,因此該船要改變航行方向,否則會進入警戒區(qū)域20、(1)(2)【解析】(1)求出函數(shù)的導函數(shù),再解導函數(shù)的不等式,即可求出函數(shù)的單調遞減區(qū)間;(2)依題意可得當時,當時,顯然成立,當時只需,參變分離得到,令,,利用導數(shù)說明函數(shù)的單調性,即可求出參數(shù)的取值范圍;【小問1詳解】解:當時定義域為,所以,令,解得或,令,解得,所以的單調遞減區(qū)間為;【小問2詳解】解:由,即,即,當時顯然成立,當時,只需,即,令,,則,所以在上單調遞減,所以,所以,故實數(shù)的取值范圍為.21、(1);(2)不存在,理由見解析.【解析】(1)設,根據(jù)中點坐標公式用N的坐標表示P的坐標,將P的坐標代入圓M的方程化簡即可得N的軌跡方程;(2)假設存在,設M為(m,0),設直線l斜率為k,表示其方程,l方程和橢圓方程聯(lián)立,根據(jù)韋達定理得根與系數(shù)關系,由,得,代入根與系數(shù)的關系求k與m關系即可判斷.【小問1詳解】設,因為N為的中點,,又P點在圓上,,即C軌跡方程為;【小問2詳解】不存在滿足條件的點M,理由如下:假設存在滿足條件的點M,設點M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論