版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年江西省新干縣第二中學(xué)等四校高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列的通項(xiàng)公式為,且數(shù)列是遞增數(shù)列,則實(shí)數(shù)的取值范圍是()A. B.C. D.2.已知過點(diǎn)的直線與圓相切,且與直線垂直,則()A. B.C. D.3.與空間向量共線的一個(gè)向量的坐標(biāo)是()A. B.C. D.4.已知橢圓是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),設(shè)以為對(duì)角線的橢圓內(nèi)接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.5.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.6.從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為,,,一輛車從甲地到乙地,恰好遇到2個(gè)紅燈的概率為()A. B.C. D.7.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.38.設(shè),向量,,,且,,則()A. B.C.3 D.49.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或10.已知圓,過點(diǎn)P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標(biāo)原點(diǎn),則最大值為()A.3 B.4C.5 D.611.已知拋物線的焦點(diǎn)為,在拋物線上有一點(diǎn),滿足,則的中點(diǎn)到軸的距離為()A. B.C. D.12.已知橢圓C:的左,右焦點(diǎn),過原點(diǎn)的直線l與橢圓C相交于M,N兩點(diǎn).其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知p:≤0,q:4x+2x-m≤0,若p是q的充分條件,則實(shí)數(shù)m的取值范圍是________14.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點(diǎn),點(diǎn)P是雙曲線C上的任意一點(diǎn)(不是頂點(diǎn)),過F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標(biāo)原點(diǎn).若|F1F2|=6|OH|,則雙曲線C的方程為____15.已知拋物線:上有兩動(dòng)點(diǎn),,且,則線段的中點(diǎn)到軸距離的最小值是___________.16.已知圓關(guān)于直線對(duì)稱,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,已知,且.(1)證明:數(shù)列為等比數(shù)列;(2)若,是否存在正整數(shù),使得對(duì)任意恒成立?若存在、求的值;若不存在,說明理由.18.(12分)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,(1)若,求c的值;(2)求最大值19.(12分)在中,內(nèi)角的對(duì)邊分別是,且(1)求角的大?。?)若,且,求的面積20.(12分)已知橢圓的左、右兩個(gè)焦點(diǎn),,離心率,短軸長為21求橢圓的方程;2如圖,點(diǎn)A為橢圓上一動(dòng)點(diǎn)非長軸端點(diǎn),的延長線與橢圓交于B點(diǎn),AO的延長線與橢圓交于C點(diǎn),求面積的最大值21.(12分)已知函數(shù)(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若對(duì)任意的,恒成立,求實(shí)數(shù)a的取值范圍22.(10分)已知是數(shù)列的前n項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C2、B【解析】首先由點(diǎn)的坐標(biāo)滿足圓的方程來確定點(diǎn)在圓上,然后求出過點(diǎn)的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因?yàn)?,所以點(diǎn)在圓上,所以過點(diǎn)的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因?yàn)橹本€與切線垂直,所以,解得.故選:B.3、C【解析】根據(jù)空間向量共線的坐標(biāo)表示即可得出結(jié)果.【詳解】.故選:C.4、C【解析】根據(jù)橢圓的對(duì)稱性和平行四邊形的性質(zhì)進(jìn)行求解即可.【詳解】是橢圓上關(guān)于原點(diǎn)對(duì)稱兩點(diǎn),所以不妨設(shè),即,因?yàn)槠叫兴倪呅我彩侵行膶?duì)稱圖形,所以也是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),所以不妨設(shè),即,,得:,即,故選:C5、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.6、B【解析】利用相互獨(dú)立事件概率乘法公式和互斥事件概率加法公式直接求解【詳解】由各路口信號(hào)燈工作相互獨(dú)立,可得某人從甲地到乙地恰好遇到2次紅燈的概率:故選:B7、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.8、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)?,可得,解得,即,又因?yàn)椋傻?,解得,即,可得,所?故選:C.9、A【解析】根據(jù)等比中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式建立方程,可解得公差d得選項(xiàng).【詳解】解:因?yàn)樵诘炔顢?shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.10、C【解析】由題意,點(diǎn)P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進(jìn)而可得,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因?yàn)檫^點(diǎn)P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點(diǎn)P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.11、A【解析】設(shè)點(diǎn),利用拋物線的定義求出的值,可求得點(diǎn)的橫坐標(biāo),即可得解.【詳解】設(shè)點(diǎn),易知拋物線的焦點(diǎn)為,由拋物線的定義可得,得,所以,點(diǎn)的橫坐標(biāo)為,故點(diǎn)到軸的距離為.故選:A.12、D【解析】由題設(shè)易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對(duì)稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由橢圓的對(duì)稱性及矩形性質(zhì)可得,由已知條件得到,進(jìn)而得到橢圓參數(shù)的齊次式求離心率范圍.二、填空題:本題共4小題,每小題5分,共20分。13、m≥6【解析】分別求出p,q成立的等價(jià)條件,利用p是q的充分條件,轉(zhuǎn)為當(dāng)0<x≤1時(shí),m大于等于的最大值,求出最值即可確定m的取值范圍【詳解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因?yàn)椋筽是q的充分條件,則當(dāng)0<x≤1時(shí),m大于等于的最大值,令,則在上單調(diào)遞增,故當(dāng)時(shí)取到最大值6,所以m≥6故答案為:m≥6【點(diǎn)睛】本題主要考查充分條件和必要條件的應(yīng)用,考查函數(shù)的最值,考查轉(zhuǎn)化的思想,屬于基礎(chǔ)題14、8x2﹣y2=1【解析】延長F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結(jié)合雙曲線的a,b,c的關(guān)系,可得雙曲線方程【詳解】解:延長F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點(diǎn),|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=115、2【解析】設(shè)拋物線的焦點(diǎn)為,由,結(jié)合拋物線的定義可得線段的中點(diǎn)到軸距離的最小值.【詳解】設(shè)拋物線的焦點(diǎn)為,點(diǎn)在拋物線的準(zhǔn)線上的投影為,點(diǎn)在直線上的投影為,線段的中點(diǎn)為,點(diǎn)到軸的距離為,則,∴,當(dāng)且僅當(dāng)即三點(diǎn)共線時(shí)等號(hào)成立,∴線段的中點(diǎn)到軸距離的最小值是2,故答案為:2.16、1【解析】根據(jù)題意,圓心在直線上,進(jìn)而求得答案.【詳解】由題意,圓心在直線上,則.故答案為:1.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由已知條件有,根據(jù)等比數(shù)列的定義即可證明;(2)由(1)求出及,進(jìn)而可得,利用二次函數(shù)的性質(zhì)即可求解的最小值,從而可得答案.【小問1詳解】證明:因?yàn)?,所以,又因?yàn)?,所以,所以?shù)列是首項(xiàng)為2公比為2的等比數(shù)列;【小問2詳解】解:由(1)知,,所以,所以,檢驗(yàn)時(shí)也滿足上式,所以,所以,令,所以,故當(dāng)即時(shí),取得最小值,所以.18、(1);(2)【解析】(1)利用等差數(shù)列以及三角形內(nèi)角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及兩角和與差的三角函數(shù),結(jié)合三角函數(shù)的最值求解即可【詳解】(1)由角A、B、C的度數(shù)成等差數(shù)列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以當(dāng)時(shí),即時(shí),19、(1);(2)【解析】(1)根據(jù),通過余弦定理求解.(2)根據(jù),通過正弦定理,把角轉(zhuǎn)化為邊得,再根據(jù),得.再代入的面積公式求解.【詳解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面積【點(diǎn)睛】本題主要考查余弦定理和正弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1)橢圓的標(biāo)準(zhǔn)方程為(2)面積的最大值為【解析】(1)由題意得,再由,標(biāo)準(zhǔn)方程為;(2)①當(dāng)?shù)男甭什淮嬖跁r(shí),不妨??;②當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,聯(lián)立方程組,又直線的距離點(diǎn)到直線的距離為面積的最大值為.試題解析:(1)由題意得,解得,∵,∴,,故橢圓的標(biāo)準(zhǔn)方程為(2)①當(dāng)直線的斜率不存在時(shí),不妨取,故;②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立方程組,化簡得,設(shè)點(diǎn)到直線的距離因?yàn)槭蔷€段的中點(diǎn),所以點(diǎn)到直線的距離為,∴綜上,面積的最大值為.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離、弦長公式和三角形面積公式等知識(shí),涉及函數(shù)與方程思想、數(shù)形結(jié)合思想分類與整合、轉(zhuǎn)化與化歸等思想,并考查運(yùn)算求解能力和邏輯推理能力,屬于較難題型.第一小題由題意由方程思想建立方程組求得標(biāo)準(zhǔn)方程為;(2)利用分類與整合思想分當(dāng)?shù)男甭什淮嬖谂c存在兩種情況求解,在斜率存在時(shí),由舍而不求法求得,再求得點(diǎn)到直線的距離為面積的最大值為.21、(1)(2)【解析】(1)先求導(dǎo),由到數(shù)值求出斜率,最后根據(jù)點(diǎn)斜式求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 經(jīng)理助理工作計(jì)劃(14篇)
- 2024年房地產(chǎn)項(xiàng)目融資咨詢委托合同
- 2024年超高功率大噸位電弧爐項(xiàng)目評(píng)價(jià)分析報(bào)告
- 2024年新型公路建設(shè)與水渠施工合同
- 愛是懂得作文參考7篇
- 2023年農(nóng)產(chǎn)品加工專用設(shè)備項(xiàng)目評(píng)價(jià)分析報(bào)告
- 2024年數(shù)據(jù)中心高性能云計(jì)算服務(wù)合同
- 2024年數(shù)據(jù)中心冷卻系統(tǒng)泵送設(shè)備維修合同
- 2024年新一代信息技術(shù)許可合同
- 天貓客服總結(jié)范文(30篇)
- 4.1DNA是主要的遺傳物質(zhì)課件高一下學(xué)期生物人教版必修2
- 六年級(jí)上冊(cè)數(shù)學(xué)??家族e(cuò)應(yīng)用題(100道)
- 肺功能檢查及其臨床應(yīng)用幻燈課件
- 《疆喀什介紹》課件
- T-CACM 1420-2022 中成藥安慰劑模擬效果評(píng)價(jià)規(guī)范
- 正確認(rèn)識(shí)人的本質(zhì)
- 兒童心理學(xué)教育培訓(xùn)家庭教育輔導(dǎo)
- 2024年北京排水集團(tuán)招聘筆試沖刺題(帶答案解析)
- 小學(xué)生家長會(huì)家長發(fā)言課件
- Vlog創(chuàng)作全流程(剪映短視頻創(chuàng)作案例教程)
- Unit3ConservationLesson3TheRoadtoDestruction課件-北師大版選擇性
評(píng)論
0/150
提交評(píng)論