2023-2024學(xué)年黑龍江省哈三中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2023-2024學(xué)年黑龍江省哈三中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2023-2024學(xué)年黑龍江省哈三中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2023-2024學(xué)年黑龍江省哈三中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2023-2024學(xué)年黑龍江省哈三中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年黑龍江省哈三中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知焦點(diǎn)在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.2.曲線的離心率為()A. B.C. D.3.如圖,是對(duì)某位同學(xué)一學(xué)期次體育測試成績(單位:分)進(jìn)行統(tǒng)計(jì)得到的散點(diǎn)圖,關(guān)于這位同學(xué)的成績分析,下列結(jié)論錯(cuò)誤的是()A.該同學(xué)的體育測試成績總的趨勢是在逐步提高,且次測試成績的極差超過分B.該同學(xué)次測試成績的眾數(shù)是分C.該同學(xué)次測試成績的中位數(shù)是分D.該同學(xué)次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān)4.已知,為正實(shí)數(shù),且,則的最小值為()A. B.C. D.15.已知拋物線的焦點(diǎn)是雙曲線的一個(gè)焦點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.6.與向量平行,且經(jīng)過點(diǎn)的直線方程為()A. B.C. D.7.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點(diǎn),則的歐拉線方程為()A. B.C. D.8.如圖,P為圓錐的頂點(diǎn),O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.9.已知雙曲線,點(diǎn)F為其左焦點(diǎn),點(diǎn)B,若BF所在直線與雙曲線的其中一條漸近線垂直,則該雙曲線的離心率為()A. B.C. D.10.已知三棱錐,點(diǎn)分別為的中點(diǎn),且,用表示,則等于()A. B.C. D.11.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于12.橢圓的左、右焦點(diǎn)分別為,過焦點(diǎn)的傾斜角為直線交橢圓于兩點(diǎn),弦長,若三角形的內(nèi)切圓的面積為,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四邊形和均為正方形,它們所在的平面互相垂直,動(dòng)點(diǎn)在線段上,、分別為、的中點(diǎn).設(shè)異面直線與所成的角為,則的最大值為____14.已知函數(shù)的單調(diào)遞減區(qū)間是,則的值為______.15.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=-1,an+1=SnSn+1,則Sn=__________.16.已知拋物線的焦點(diǎn)為,點(diǎn)在上,且,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側(cè)面積;(2)求平面SCD與平面SAB的夾角的余弦值.18.(12分)已知圓,P(2,0),M點(diǎn)是圓Q上任意一點(diǎn),線段PM的垂直平分線交半徑MQ于點(diǎn)C,當(dāng)M點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)C的軌跡為曲線C(1)求曲線C方程;(2)已知直線l:x=8,A、B是曲線C上的兩點(diǎn),且不在x軸上,,垂足為,,垂足為,若D(3,0),且的面積是△ABD面積的5倍,求△ABD面積的最大值19.(12分)已知橢圓的短軸長是2,且離心率為(1)求橢圓E的方程;(2)已知,若直線與橢圓E相交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,是否存在常數(shù),使恒成立,并說明理由20.(12分)某話劇表演小組由名學(xué)生組成,若從這名學(xué)生中任意選取人,其中恰有名男生的概率是.(1)求該小組中男、女生各有多少人?(2)若這名學(xué)生站成一排照相留念,求所有排法中男生不相鄰的概率.21.(12分)已知圓經(jīng)過點(diǎn)和,且圓心在直線上.(1)求圓的方程;(2)過原點(diǎn)的直線與圓交于M,N兩點(diǎn),若的面積為,求直線的方程.22.(10分)已知命題p:方程的曲線是焦點(diǎn)在y軸上的雙曲線;命題q:方程無實(shí)根.若p或q為真,¬q為真,求實(shí)數(shù)m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題意,化簡即可得出雙曲線的離心率【詳解】解:由題意,.故選:D2、C【解析】由曲線方程直接求離心率即可.【詳解】由題設(shè),,,∴離心率.故選:C.3、C【解析】根據(jù)給定的散點(diǎn)圖,逐一分析各個(gè)選項(xiàng)即可判斷作答.【詳解】對(duì)于A,由散點(diǎn)圖知,8次測試成績總體是依次增大,極差為,A正確;對(duì)于B,散點(diǎn)圖中8個(gè)數(shù)據(jù)的眾數(shù)是48,B正確;對(duì)于C,散點(diǎn)圖中的8個(gè)數(shù)由小到大排列,最中間兩個(gè)數(shù)都是48,則次測試成績的中位數(shù)是分,C不正確;對(duì)于D,散點(diǎn)圖中8個(gè)點(diǎn)落在某條斜向上的直線附近,則次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān),D正確.故選:C4、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最小值為1,故選:D.5、B【解析】根據(jù)拋物線和寫出焦點(diǎn)坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點(diǎn)為,雙曲線的,,所以,所以雙曲線的右焦點(diǎn)為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.6、A【解析】利用點(diǎn)斜式求得直線方程.【詳解】依題意可知,所求直線的斜率為,所以所求直線方程為,即.故選:A7、D【解析】根據(jù)題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因?yàn)?,所以線段的中點(diǎn)的坐標(biāo),線段所在直線的斜率,則線段的垂直平分線的方程為,即,因?yàn)?,所以的外心、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點(diǎn)睛】本題主要考走查直線的方程,解題的關(guān)鍵是準(zhǔn)確找出歐拉線,屬于中檔題.8、B【解析】先求出,再利用向量的線性運(yùn)算和數(shù)量積計(jì)算求解.【詳解】解:由題得,,故選:B9、C【解析】設(shè)出雙曲線半焦距c,利用斜率坐標(biāo)公式結(jié)合垂直關(guān)系列式計(jì)算作答.【詳解】設(shè)雙曲線半焦距為c,則,直線BF的斜率為,雙曲線的漸近線為:,因直線BF與雙曲線的一條漸近線垂直,則有,即,于是得,而,解得,所以雙曲線的離心率為.故選:C10、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.11、D【解析】由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D考點(diǎn):平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論12、C【解析】由題可得直線AB的方程,從而可表示出三角形面積,又利用焦點(diǎn)三角形及三角形內(nèi)切圓的性質(zhì),也可表示出三角形面積,則橢圓的離心率即求.【詳解】由題知直線AB的方程為,即,∴到直線AB距離,又三角形的內(nèi)切圓的面積為,則半徑為1,由等面積可得,.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】如圖所示,建立空間直角坐標(biāo)系,設(shè),,,,,由向量法可得,令,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可求得的最大值,從而可得答案【詳解】解:由題意,根據(jù)已知條件,直線AB,AD,AQ兩兩互相垂直,所以建立如圖所示空間直角坐標(biāo)系不妨設(shè),則,0,,,0,,,1,,設(shè),,,,,,,,,,,令,,則,函數(shù)在上單調(diào)遞減,時(shí),函數(shù)取得最大值,的最大值為故答案為:14、【解析】先求出,由題設(shè)易知是的解集,利用根與系數(shù)關(guān)系求m、n,進(jìn)而求的值.【詳解】由題設(shè),,由單調(diào)遞減區(qū)間是,∴的解集為,則是的解集,∴,可得,故.故答案為:15、-.【解析】因?yàn)?,所以,所以,即,又,即,所以?shù)列是首項(xiàng)和公差都為的等差數(shù)列,所以,所以考點(diǎn):數(shù)列的遞推關(guān)系式及等差數(shù)列的通項(xiàng)公式【方法點(diǎn)晴】本題主要考查了數(shù)列的通項(xiàng)公式、數(shù)列的遞推關(guān)系式的應(yīng)用、等差數(shù)列的通項(xiàng)公式及其性質(zhì)定知識(shí)點(diǎn)的綜合應(yīng)用,解答中得到,,確定數(shù)列是首項(xiàng)和公差都為的等差數(shù)列是解答的關(guān)鍵,著重考查了學(xué)生靈活變形能力和推理與論證能力,平時(shí)應(yīng)注意方法的積累與總結(jié),屬于中檔試題16、【解析】由拋物線的焦半徑公式可求得的值.【詳解】拋物線的準(zhǔn)線方程為,由拋物線的焦半徑公式可得,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)垂直關(guān)系依次求解每個(gè)側(cè)面三角形邊長和面積即可得解;(2)建立空間直角坐標(biāo)系,利用向量法求解.小問1詳解】由題可得:,則,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交線,所以BC⊥平面SAB,BC⊥BS,,所以四棱錐的側(cè)面積【小問2詳解】以A為原點(diǎn),建立空間直角坐標(biāo)系如圖所示:設(shè)平面SCD的法向量,,取所以取為平面SAB的的法向量所以平面SCD與平面SAB的夾角的余弦值.18、(1)(2)【解析】(1)由定義法求出曲線C的方程;(2)先判斷出直線AB過定點(diǎn)H(2,0)或H(4,0).當(dāng)AB過定點(diǎn)H(4,0),求出最大;當(dāng)H(2,0)時(shí),可設(shè)直線AB:.用“設(shè)而不求法”表示出,不妨設(shè)(),利用函數(shù)的單調(diào)性求出△ABD面積的最大值.【小問1詳解】因?yàn)榫€段PM的垂直平分線交半徑MQ于點(diǎn)C,所以,所以,符合橢圓的定義,所以點(diǎn)C的軌跡為以P、Q為焦點(diǎn)的橢圓,其中,所以,所以曲線C的方程為.【小問2詳解】不妨設(shè)直線l:x=8交x軸于G(8,0),直線AB交x軸于H(h,0),則,.因?yàn)?,,,所?又因?yàn)榈拿娣e是△ABD面積的5倍,所以.因?yàn)镚(8,0),D(3,0),所以,所以H(2,0)或H(4,0).當(dāng)H(4,0)時(shí),則H與A(或H與B)重合,不妨設(shè)H與A重合,此時(shí),,要使△ABD面積最大,只需B在短軸頂點(diǎn)時(shí),=2最大,所以最大;當(dāng)H(2,0)時(shí),要想構(gòu)成三角形ABD,直線AB的斜率不為0,可設(shè)直線AB:.設(shè),則,消去x可得:,所以,,,所以.不妨設(shè)(),則,由對(duì)勾函數(shù)的性質(zhì)可知,在上單調(diào)遞減,所以當(dāng)t=4時(shí),,此時(shí)最大綜上所述,△ABD面積的最大值為.【點(diǎn)睛】(1)“設(shè)而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題;(2)解析幾何中最值計(jì)算方法有兩類:①幾何法:利用幾何圖形求最值;②代數(shù)法:表示為函數(shù),利用函數(shù)求最值.19、(1);(2)存在,理由見解析.【解析】(1)利用離心率,短軸長求出a,b,即可求得橢圓方程.(2)聯(lián)立直線與橢圓方程,利用韋達(dá)定理計(jì)算判定,由M為線段AB中點(diǎn)即可確定存在常數(shù)推理作答.【小問1詳解】因橢圓的短軸長是2,則,而離心率,解得,所以橢圓方程為.【小問2詳解】存在常數(shù),使恒成立,

由消去y并整理得:,設(shè),,則,,又,,,則有,而線段AB的中點(diǎn)為M,于是得,并且有所以存在常數(shù),使恒成立.20、(1)男生人數(shù)為,女生人數(shù)為;(2).【解析】(1)設(shè)男生的人數(shù)為,則女生人數(shù)為,且,根據(jù)組合計(jì)數(shù)原理結(jié)合古典概型的概率公式可求得的值,即可得解;(2)利用插空法結(jié)合古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:設(shè)男生的人數(shù)為,則女生人數(shù)為,且,由已知可得,即,因?yàn)榍?,解得,所以,該小組中男生人數(shù)為,女生人數(shù)為.【小問2詳解】解:若男生不相鄰,則先將女生全排,然后在女生所形成的個(gè)空中選個(gè)空插入男生,因此,所有排法中男生不相鄰的概率為.21、(1)(2)直線的方程為或或【解析】(1)由弦的中垂線與直線的交點(diǎn)為圓心即可求解;(2)由,可得或,進(jìn)而有或,顯然直線斜率存在,設(shè)直線,由點(diǎn)到直線的距離公式求出的值即可得答案.【小問1詳解】解:設(shè)弦的中點(diǎn)為,則有,因?yàn)?,所以直線,所以直線的中垂線為,則圓心在直線上,且在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論