


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
一個基于圖卷積神經(jīng)網(wǎng)絡的局部密度優(yōu)化方法(文Density-basedclusteringisawidelyusedtechniqueindataminingandmachinelearning.However,traditionaldensity-basedclusteringmethodsmayfailtocapturecomplexspatialpatternsinthedata,especiallywheninvolvinghigh-dimensionalfeatures.Inthispaper,weproposealocaldensityoptimizationmethodbasedongraphconvolutionalneuralnetworks(GCNNs).TheproposedmethodutilizesthepowerofGCNNstolearnahierarchicalrepresentationofthedata,andoptimizesthelocaldensitybyincorporatingthelearnedfeaturerepresentation.Experimentalresultsonseveralreal-worlddatasetsindicatethatourproposedmethodoutperformsexistingdensity-basedclusteringtechniquesintermsofclusteringaccuracyandrobustness.Density-basedclusteringisafundamentaltechniqueinunsupervisedlearningthathasbeenextensivelystudiedandappliedinvariousdomains,suchasimagesegmentation,communitydetection,andanomalydetection.Thebasicideaofdensity-basedclusteringistogroupdatapointsthatareclosetogetherinthedensityspace,whileseparatingthosethatarefarapart.Theadvantagesofdensity-basedclusteringmethodsincludetheirabilitytohandlearbitrary-shapedclustersandnoisydata,andtheirrobustnesstooutliers.However,traditionaldensity-basedclusteringmethodsmayfailtocapturecomplexspatialpatternsinthedata,especiallywheninvolvinghigh-dimensionalfeatures.Moreover,theperformanceofdensity-basedclusteringmethodsheavilyreliesonthedefinitionofthelocaldensityandthechoiceofthedistancemetric.Recently,deeplearninghasdemonstratedremarkablesuccessinawiderangeofmachinelearningtasks,includingclustering.Inparticular,graphconvolutionalneuralnetworks(GCNNs)havegainedincreasingattentionduetotheirabilitytolearnrepresentationsofgraph-structureddata.GCNNsextendthetraditionalconvolutionoperationtothegraphdomainandallowthemodeltocapturelocalandglobalfeaturesofthegraph.Therefore,GCNNsarewell-suitedfordealingwithhigh-dimensionalandcomplexdata.Motivatedbytheadvantagesofdensity-basedclusteringandthepowerofGCNNs,weproposealocaldensityoptimizationmethodbasedonGCNNs.Specifically,ourmethodutilizesthelearnedfeaturerepresentationbyGCNNstooptimizethelocaldensityestimation,whichinturnimprovestheclusteringquality.Ourproposedmethodconsistsoftwostages:featurelearningbyGCNNsandlocaldensityoptimization.Inthefirststage,weuseaGCNNtolearnahierarchicalrepresentationofthedata.AGCNNtakesasinputagraphwithnodefeaturesandlearnsasetoffiltersthatextractlocalandglobalfeaturesofthegraph.TheoutputoftheGCNNisanewsetofnodefeaturesthatbetterrepresenttherelationshipsbetweennodesinthegraph.Thelearnedfeaturerepresentationisthenusedinthesecondstagetooptimizethelocaldensityestimation.Inthesecondstage,weusethelearnedfeaturerepresentationtoestimatethelocaldensityofeachdatapoint.Specifically,wedefineakernelfunctionthatmeasuresthesimilaritybetweentwodatapointsinthelearnedfeaturespace.Weusethiskernelfunctiontocomputethelocaldensityofeachdatapointbasedonitsneighboringpoints.Thelocaldensityisthenoptimizedbyagradientdescentalgorithm,whichaimstominimizealossfunctionthatpenalizesthedifferencebetweentheestimatedandtruelocaldensities.Weevaluatetheperformanceofourproposedmethodonseveralreal-worlddatasets,includingtheMNISThandwrittendigitsdataset,theCIFAR-10imagedataset,andtheUCIadultincomedataset.Wecompareourmethodagainsttwostate-of-the-artdensity-basedclusteringmethods,namelyDBSCANandHDBSCAN.Experimentalresultsshowthatourproposedmethodachieveshigherclusteringaccuracyandrobustnessthanthetwobaselinemethodsonalldatasets.Inparticular,theproposedmethodoutperformsthebaselinemethodswhenthedatafeaturesarehigh-dimensionalorthedatacontaincomplexpatterns.Theproposedmethodisalsomorerobusttothechoiceofthedistancemetricandthedensityparameter.Inthispaper,wehaveproposedalocaldensityoptimizationmethodbasedongraphconvolutionalneuralnetworksfordensity-basedclustering.TheproposedmethodutilizesthepowerofGCNNstolearnahierarchicalrepresentationofthedataandoptimizesthelocaldensityestimationusingthelearnedfeatures.Experimentalresultsonseveralreal-worlddatasetsdemonstratethatourproposedmethodoutper
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電氣工程識圖與繪制》課件 項目二 任務一 三居室電氣系統(tǒng)咨詢
- 2025年超多道數(shù)字地震儀合作協(xié)議書
- 水體漂浮物自動收集器行業(yè)跨境出海戰(zhàn)略研究報告
- 沙漠博物館行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 游戲周邊商品電商平臺行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 幼兒園校車升級行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 木質素燃料高效燃燒行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 職場精英挑戰(zhàn)賽綜藝節(jié)目企業(yè)制定與實施新質生產(chǎn)力戰(zhàn)略研究報告
- 電影發(fā)行代理企業(yè)制定與實施新質生產(chǎn)力戰(zhàn)略研究報告
- 2025年高考語文系統(tǒng)總復習:現(xiàn)代詩歌閱讀之詩歌分類、特點、真題
- 腹部CT檢查技術ppt課件(PPT 18頁)
- 《醫(yī)藥代表拜訪技巧及區(qū)域管理》PPT課件
- 附表1哈爾濱市尚志市水庫工程劃界成果表
- 事件研究法PPT課件
- 《劉姥姥進大觀園》課本劇劇本3篇
- 監(jiān)理規(guī)劃細則審批表
- 國家開放大學《水利水電工程造價管理》形考任務1-4參考答案
- 第二章 三相異步電機控制線路
- CTP-120P互感器綜合測試儀說明書(V1.0)
- 礦泉水資源采礦許可證
- 焊接檢驗培訓課件(PPT 61頁)
評論
0/150
提交評論