2024屆北京市海淀區(qū)市級名校高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
2024屆北京市海淀區(qū)市級名校高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
2024屆北京市海淀區(qū)市級名校高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
2024屆北京市海淀區(qū)市級名校高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
2024屆北京市海淀區(qū)市級名校高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆北京市海淀區(qū)市級名校高二數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,”的否定是A., B.,C., D.,2.已知點,分別在雙曲線的左右兩支上,且關(guān)于原點對稱,的左焦點為,直線與的左支相交于另一點,若,且,則的離心率為()A B.C. D.3.已知拋物線,,點在拋物線上,記點到直線的距離為,則的最小值是()A.5 B.6C.7 D.84.已知“”的必要不充分條件是“或”,則實數(shù)的最小值為()A. B.C. D.5.已知拋物線過點,則拋物線的焦點坐標(biāo)為()A. B.C. D.6.已知集合,,則中元素的個數(shù)為()A.3 B.2C.1 D.07.已知等比數(shù)列的公比為,則“是遞增數(shù)列”的一個充分條件是()A. B.C. D.8.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米9.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.10.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.11.過點且斜率為的直線方程為()A. B.C D.12.若,則()A.0 B.1C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,直線與的交點為,以為圓心作圓,圓上的點到軸的最小距離為(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點作圓的切線,求切線的方程14.已知點P為橢圓上的任意一點,點,分別為該橢圓的左、右焦點,則的最大值為______________.15.已知、雙曲線的左、右焦點,A、B為雙曲線上關(guān)于原點對稱的兩點,且滿足,,則雙曲線的離心率為___________.16.若和或都是假命題,則的范圍是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,分別是棱的中點,點在線段上.(1)當(dāng)直線與平面所成角最大時,求線段的長度;(2)是否存在這樣的點,使平面與平面所成的二面角的余弦值為,若存在,試確定點的位置,若不存在,說明理由.18.(12分)已知等差數(shù)列的前三項依次為,4,,前項和為,且.(1)求的通項公式及的值;(2)設(shè)數(shù)列的通項,求證是等比數(shù)列,并求的前項和.19.(12分)在銳角中,角的對邊分別為,滿足.(1)求;(2)若的面積為,求的值.20.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值21.(12分)已知雙曲線的左,右焦點為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點,若,求k的值.22.(10分)已知函數(shù).(1)求的單調(diào)遞減區(qū)間;(2)在銳角中,,,分別為角,,的對邊,且滿足,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】特稱命題的否定是全稱命題,改量詞,且否定結(jié)論,故命題的否定是“”.本題選擇C選項.2、D【解析】根據(jù)雙曲線的定義及,,應(yīng)用勾股定理,可得關(guān)系,即可求解.【詳解】設(shè)雙曲線的右焦點為,連接,,,如圖:根據(jù)雙曲線的對稱性及可知,四邊形為矩形.設(shè)因為,所以,又,所以,,在和中,,①,②由②化簡可得,③把③代入①可得:,所以,故選:D【點睛】本題主要考查了雙曲線的定義,雙曲線的簡單幾何性質(zhì),勾股定理,屬于難題.3、D【解析】先求出拋物線的焦點和準(zhǔn)線,利用拋物線的定義將轉(zhuǎn)化為的距離,即可求解.【詳解】由已知得拋物線的焦點為,準(zhǔn)線方程為,設(shè)點到準(zhǔn)線的距離為,則,則由拋物線的定義可知∵,當(dāng)點、、三點共線時等號成立,∴,故選:.4、A【解析】首先解不等式得到或,根據(jù)題意得到,再解不等式組即可.【詳解】,解得或,因為“”的必要不充分條件是“或”,所以.實數(shù)的最小值為.故選:A5、D【解析】把點代入拋物線方程求出,再化成標(biāo)準(zhǔn)方程可得解.【詳解】因為拋物線過點,所以,所以拋物線方程為,方程化成標(biāo)準(zhǔn)方程為,故拋物線的焦點坐標(biāo)為.故選:D.6、B【解析】集合中的元素為點集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點組成的集合,集合B表示直線上所有的點組成的集合,又圓與直線相交于兩點,,則中有2個元素.故選B.【名師點睛】求集合的基本運(yùn)算時,要認(rèn)清集合元素的屬性(是點集、數(shù)集或其他情形)和化簡集合,這是正確求解集合運(yùn)算的兩個先決條件.集合中元素的三個特性中的互異性對解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.7、D【解析】由等比數(shù)列滿足遞增數(shù)列,可進(jìn)行和兩項關(guān)系的比較,從而確定和的大小關(guān)系.【詳解】由等比數(shù)列是遞增數(shù)列,若,則,得;若,則,得;所以等比數(shù)列是遞增數(shù)列,或,;故等比數(shù)列是遞增數(shù)列是遞增數(shù)列的一個充分條件為,.故選:D.8、B【解析】以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,設(shè)雙曲線標(biāo)準(zhǔn)方程為:(a>0),則頂點,,將A點代入雙曲線方程得,,當(dāng)水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.9、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時取等號,故選:C.10、C【解析】運(yùn)用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗滿足題意故選:C11、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.12、D【解析】由復(fù)數(shù)的乘方運(yùn)算求,再求模即可.【詳解】由題設(shè),,故2.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出點的坐標(biāo),設(shè)圓的半徑為,圓上的點到軸的最小距離為1求得的值,由此可得出圓的標(biāo)準(zhǔn)方程;(Ⅱ)對切線的斜率是否存在進(jìn)行分類討論,當(dāng)切線的斜率不存在時,可得切線方程為,驗證即可;當(dāng)切線的斜率存在時,可設(shè)所求切線的方程為,利用圓心到切線的距離等于圓的半徑可求得的值,綜合可得出所求切線的方程.【詳解】(Ⅰ)聯(lián)立方程組,解得,即點設(shè)圓的半徑為,由于圓上的點到軸的最小距離為,則,所以,故圓的標(biāo)準(zhǔn)方程為;(Ⅱ)若切線的斜率不存在,則所求切線的方程為,圓心到直線的距離為,不合乎題意;若切線的斜率存在,可設(shè)切線的方程為,即,圓的圓心坐標(biāo)為,半徑為,由題意可得,整理得,解得或故所求切線方程為或【點睛】本題考查圓的標(biāo)準(zhǔn)方程的求解,同時也考查了過圓外一點的圓的切線方程的求解,考查計算能力,屬于中等題.14、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【詳解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大時,由橢圓的性質(zhì)知當(dāng)P為橢圓上頂點時最大,此時,,所以,所以的最大值是1,,所以,故答案為:.【點睛】本題考查橢圓焦點三角形的問題,考查正弦定理的應(yīng)用.15、【解析】可得四邊形為矩形,運(yùn)用三角函數(shù)的定義可得,,由雙曲線的定義和矩形的性質(zhì),可得,由離心率公式求解即可.【詳解】、為雙曲線的左、右焦點,可得四邊形為矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案為:.【點睛】關(guān)鍵點點睛:得出四邊形為矩形,利用雙曲線的定義解決焦點三角形問題.16、【解析】先由和或都是假命題,求出x的范圍,取交集即可.【詳解】若為假命題,則有或若或是假命題,則所以的范圍是即的范圍是胡答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,A1P=【解析】(1)作出線面角,因為對邊為定值,所以鄰邊最小時線面角最大;(2)建立空間直角坐標(biāo)系,由向量法求二面角列方程可得.【小問1詳解】直線PN與平面A1B1C1所成的角即為直線PN與平面ABC所成角,過P作,即PN與面ABC所成的角,因為PH為定值,所以當(dāng)NH最小時線面角最大,因為當(dāng)P為中點時,,此時NH最小,即PN與平面ABC所成角最大,此時.【小問2詳解】以AB,AC,AA1為x,y,z軸建立空間坐標(biāo)系,則:A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,1)設(shè)=,,,設(shè)平面PMN的法向量為,則,即,解得,平面AC1C的法向量為,.所以P點為A1B1的四等分點,且A1P=.18、(1),(2)證明見解析,【解析】(1)直接利用等差中項的應(yīng)用求出的值,進(jìn)一步求出數(shù)列的通項公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進(jìn)一步求出數(shù)列的和.【小問1詳解】等差數(shù)列的前三項依次為,4,,∴,解得;故首項為2,公差為2,故,前項和為,且,整理得,解得或-11(負(fù)值舍去).∴,k=10.【小問2詳解】由(1)得:,故(常數(shù)),故數(shù)列是等比數(shù)列;∴.19、(1);(2).【解析】(1)由條件可得,即,從而可得答案.(2)由條件結(jié)合三角形的面積公式可得,再由余弦定理得,配方可得答案.【詳解】(1)因為,所以,所以所以,因為所以,因為,所以(2)由面積公式得,于是,由余弦定理得,即,整理得,故.20、(1)見解析;(2).【解析】(1)推導(dǎo)出,取BC的中點F,連結(jié)EF,可推出,從而平面,進(jìn)而,由此得到平面,從而;(2)以為坐標(biāo)原點,,所在直線分別為,軸,以過點且與平行的直線為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點F,連結(jié)EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標(biāo)原點,所在直線分別為軸,建立空間直角坐標(biāo)系(如圖),則∴設(shè)平面的法向量為,則,即得平面一個法向量為由(1)知平面,所以可設(shè)平面的法向量為設(shè)平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點睛】用空間向量求解立體幾何問題的注意點(1)建立坐標(biāo)系時要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準(zhǔn)確求得所需點的坐標(biāo)(2)用平面的法向量求二面角的大小時,要注意向量的夾角與二面角大小間的關(guān)系,這點需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結(jié)論21、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設(shè),則的中點為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達(dá)定理可得答案.【小問1詳解】設(shè),則,又,所以,得,所以雙曲線的漸近線方程為.【小問2詳解】由已知直線的傾斜角不是直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論