2024屆北京市通州區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁(yè)
2024屆北京市通州區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁(yè)
2024屆北京市通州區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁(yè)
2024屆北京市通州區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁(yè)
2024屆北京市通州區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆北京市通州區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為拋物線上一點(diǎn),點(diǎn)P到拋物線C的焦點(diǎn)的距離與它到y(tǒng)軸的距離之比為,則()A.1 B.C.2 D.32.等差數(shù)列中,若,則()A.42 B.45C.48 D.513.命題“”的否定是()A. B.C. D.4.已知F是拋物線x2=y(tǒng)的焦點(diǎn),A、B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到x軸的距離為()A. B.C.1 D.5.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.36.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為()A. B.C. D.7.?dāng)?shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬(wàn)物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過(guò)2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).則上述結(jié)論中正確的個(gè)數(shù)是()A.1 B.2C.3 D.48.若數(shù)列是等差數(shù)列,其前n項(xiàng)和為,若,且,則等于()A. B.C. D.9.從編號(hào)為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進(jìn)行質(zhì)檢,若所抽樣本中含有編號(hào)66的商品,則下列編號(hào)一定被抽到的是()A.111 B.52C.37 D.810.已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則的值為()A.1 B.3C.9 D.8111.已知隨機(jī)變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.3212.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{}的前n項(xiàng)和為,則該數(shù)列的通項(xiàng)公式__________.14.已知點(diǎn),平面過(guò),,三點(diǎn),則點(diǎn)到平面的距離為________.15.已知為數(shù)列{}前n項(xiàng)和,若,且),則=___16.滕王閣,江南三大名樓之一,因初唐詩(shī)人王勃所作《滕王閣序》中“落霞與孤鶩齊飛,秋水共長(zhǎng)天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點(diǎn),,處測(cè)得閣頂端點(diǎn)的仰角分別為,,.且米,則滕王閣高度___________米.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知點(diǎn).點(diǎn)M滿足.記M的軌跡為C.(1)求C的方程;(2)直線l經(jīng)過(guò)點(diǎn),與軌跡C分別交于點(diǎn)M、N,與直線交于點(diǎn)Q,求證:.18.(12分)在如圖三角形數(shù)陣中第n行有n個(gè)數(shù),表示第i行第j個(gè)數(shù),例如,表示第4行第3個(gè)數(shù).該數(shù)陣中每一行的第一個(gè)數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,從第三行起每一行的數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中).已知.(1)求m及;(2)記,求.19.(12分)已知各項(xiàng)均為正數(shù)的等比數(shù)列前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求20.(12分)已知等差數(shù)列各項(xiàng)均不為零,為其前項(xiàng)和,點(diǎn)在函數(shù)的圖像上.(1)求的通項(xiàng)公式;(2)若數(shù)列滿足,求的前項(xiàng)和;(3)若數(shù)列滿足,求的前項(xiàng)和的最大值、最小值.21.(12分)已知:,,:,,且為真命題,求實(shí)數(shù)的取值范圍.22.(10分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(diǎn)(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先求出點(diǎn)的坐標(biāo),然后根據(jù)拋物線的定義和已知條件列方程求解即可【詳解】因?yàn)闉閽佄锞€上一點(diǎn),所以,得,所以,拋物線的焦點(diǎn)為,因?yàn)辄c(diǎn)P到拋物線C的焦點(diǎn)的距離與它到y(tǒng)軸的距離之比為,所以,化簡(jiǎn)得,因?yàn)?,所以,故選:B2、C【解析】結(jié)合等差數(shù)列的性質(zhì)求得正確答案.【詳解】依題意是等差數(shù)列,,.故選:C3、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結(jié)論進(jìn)行否定即可.【詳解】命題“”的否定是“”.故選:C4、B【解析】根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出,的中點(diǎn)縱坐標(biāo),求出線段的中點(diǎn)到軸的距離【詳解】解:拋物線的焦點(diǎn)準(zhǔn)線方程,設(shè),,,解得,線段的中點(diǎn)縱坐標(biāo)為,線段的中點(diǎn)到軸的距離為,故選:B【點(diǎn)睛】本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問(wèn)題,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,屬于基礎(chǔ)題5、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.6、C【解析】根據(jù)點(diǎn)關(guān)于原點(diǎn)對(duì)稱的性質(zhì)即可知答案.【詳解】由點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則對(duì)稱點(diǎn)坐標(biāo)為該點(diǎn)對(duì)應(yīng)坐標(biāo)的相反數(shù),所以.故選:C7、B【解析】對(duì)于①,由判斷,對(duì)于②,利用基本不等式可判斷,對(duì)于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進(jìn)行比較即可,對(duì)于④,將和聯(lián)立,求解出兩曲線的切點(diǎn),從而可判斷【詳解】對(duì)于①,由,得異號(hào),方程(xy<0)關(guān)于原點(diǎn)及y=x對(duì)稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對(duì)于②,因?yàn)?,所以,所以,所以,所以由曲線的對(duì)稱性可知曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過(guò)2,所以②正確,對(duì)于③,由②可知曲線C上到原點(diǎn)的距離不超過(guò)2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯(cuò)誤,對(duì)于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點(diǎn),,,,而點(diǎn)(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過(guò)任何整數(shù)點(diǎn),由曲線的對(duì)稱性可知曲線在其它象限也不經(jīng)過(guò)任何整數(shù)點(diǎn),所以曲線C上只有1個(gè)整點(diǎn)(0,0),所以④錯(cuò)誤,故選:B8、B【解析】由等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式求出的首項(xiàng)和公差,即可求出.【詳解】設(shè)等差數(shù)列的公差為,則解得:,所以.故選:B.9、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因?yàn)楹芯幪?hào)66的商品被抽到,故其他能被抽到的是,當(dāng)時(shí),,其他三個(gè)選項(xiàng)均不合要求,故選:A10、A【解析】根據(jù)條件,利用橢圓標(biāo)準(zhǔn)方程中長(zhǎng)半軸長(zhǎng)a,短半軸長(zhǎng)b,半焦距c關(guān)系列式計(jì)算即得.【詳解】由橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則半焦距c=2,于是得,解得,所以值為1.故選:A11、C【解析】依據(jù)正態(tài)曲線的對(duì)稱性即可求得【詳解】由隨機(jī)變量服從正態(tài)分布,可知正態(tài)曲線的對(duì)稱軸為直線由,可得則,故故選:C12、D【解析】先求定義域,再求導(dǎo)數(shù),令解不等式,即可.【詳解】函數(shù)的定義域?yàn)榱?,解得故選:D【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2n+1【解析】由計(jì)算,再計(jì)算可得結(jié)論【詳解】由題意時(shí),,又適合上式,所以故答案為:【點(diǎn)睛】本題考查由求通項(xiàng)公式,解題根據(jù)是,但要注意此式不含,14、【解析】先求得平面ABC的一個(gè)法向量,然后由求解.【詳解】因?yàn)?,,,,所以,設(shè)平面ABC的一個(gè)法向量為,則,即,令,則,所以則點(diǎn)到平面的距離為,故答案:15、2【解析】第一步找出數(shù)列周期,第二步利用周期性求和.【詳解】,,,,,,可知數(shù)列{}是周期為4的周期數(shù)列,所以故答案為:2.16、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進(jìn)而可得長(zhǎng).【詳解】設(shè),因?yàn)?,,,所以,,?在中,,即①.,在中,,即②,因?yàn)?,所以①②兩式相加可得:,解得:,則,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見解析【解析】(1)根據(jù)已知得點(diǎn)M的軌跡C為橢圓,根據(jù)橢圓定義可得方程;(2)直線的方程設(shè)為,與橢圓方程聯(lián)立,利用韋達(dá)定理及線段長(zhǎng)公式進(jìn)行計(jì)算即可.【小問(wèn)1詳解】由橢圓定義得,點(diǎn)M的軌跡C為以點(diǎn)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,設(shè)此橢圓的標(biāo)準(zhǔn)方程為,則由題意得,所以C方程為;【小問(wèn)2詳解】設(shè)點(diǎn)的坐標(biāo)分別為,由題意知直線的斜率一定存在,設(shè)為,則直線的方程可設(shè)為,與橢圓方程聯(lián)立可得,由韋達(dá)定理知,所以,,又因?yàn)?,所以又由題知,所以,所以,所以,得證.18、(1),;(2)【解析】(1)根據(jù)題意以m表示出,由即可求出,進(jìn)而求出;(2)根據(jù)等差數(shù)列和等比數(shù)列的通項(xiàng)公式求出,再利用錯(cuò)位相減法即可求出.【詳解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,當(dāng)時(shí),,又,,滿足,,,兩式相減得,.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對(duì)于等差等比數(shù)列,利用公式法可直接求解;(2)對(duì)于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯(cuò)位相減法求和;(3)對(duì)于結(jié)構(gòu),利用分組求和法;(4)對(duì)于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項(xiàng)相消法求和.19、(1)(2)9【解析】(1)根據(jù)題意列出關(guān)于等比數(shù)列首項(xiàng)、公比的方程組即可解決;(2)利用等比數(shù)列的前項(xiàng)和的公式,解方程即可解決.【小問(wèn)1詳解】設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列首項(xiàng)為,公比為則有,解之得則等比數(shù)列的通項(xiàng)公式.【小問(wèn)2詳解】由,可得20、(1)(2)(3)最大值為,最小值為【解析】(1)將點(diǎn)代入函數(shù)解析再結(jié)合前和即可求解;(2)運(yùn)用錯(cuò)位相減法或分組求和法都可以求解;(3)將數(shù)列的通項(xiàng)變形為,再求和,通過(guò)分類討論從單調(diào)性上分析求解即可.【小問(wèn)1詳解】因?yàn)辄c(diǎn)在函數(shù)的圖像上,所以,又?jǐn)?shù)列是等差數(shù)列,所以,即所以,;【小問(wèn)2詳解】解法1:,==,解法2:,①,②①-②得,;【小問(wèn)3詳解】記的前n項(xiàng)和為,則=,當(dāng)n為奇數(shù)時(shí)隨著n的增大而減小,可得,當(dāng)n為偶數(shù)時(shí)隨著n增大而增大,可得,所以的最大值為,最小值為.21、【解析】由,為真,可得對(duì)任意的恒成立,從而分和求出實(shí)數(shù)的取值范圍,再由,,可得關(guān)于的方程有實(shí)根,則有,從而可求出實(shí)數(shù)的取值范圍,然后求交集可得結(jié)果【詳解】解:可化為.若:,為真,則對(duì)任意的恒成立.當(dāng)時(shí),不等式可化為,顯然不恒成立,當(dāng)時(shí),有且,所以.①若:,為真,則關(guān)于的方程有實(shí)根,所以,即,所以或.②又為真命題,故,均為真命題.所以由①②可得的取值范圍為.22、(1)證明見解析;(2).【解析】(1)在平面中構(gòu)造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論