




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河北省南宮中學(xué)等四校高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)等差數(shù)列的前n項(xiàng)和為,且,則()A.64 B.72C.80 D.1442.若拋物線上的點(diǎn)到其焦點(diǎn)的距離是到軸距離的倍,則等于A. B.1C. D.23.已知關(guān)于x的不等式的解集為空集,則的最小值為()A. B.2C. D.44.已知拋物線的焦點(diǎn)為,為拋物線上第一象限的點(diǎn),若,則直線的傾斜角為()A. B.C. D.5.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值是()A. B.C. D.46.命題“,”的否定為()A., B.,C., D.,7.如圖,在直三棱柱中,,,E是的中點(diǎn),則直線BC與平面所成角的正弦值為()A. B.C. D.8.設(shè)等差數(shù)列的前項(xiàng)和為,已知,,則的公差為()A.2 B.3C.4 D.59.《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個(gè)人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個(gè)人各出多少錢?”在這個(gè)問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.1610.已知函數(shù)的導(dǎo)函數(shù)滿足,則()A. B.C.3 D.411.函數(shù)在的圖象大致為()A. B.C D.12.已知點(diǎn)在橢圓上,與關(guān)于原點(diǎn)對(duì)稱,,交軸于點(diǎn),為坐標(biāo)原點(diǎn),,則橢圓離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最上面一層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球…….設(shè)各層球數(shù)構(gòu)成一個(gè)數(shù)列,其中,,,則______14.已知直線,,為拋物線上一點(diǎn),則到這兩條直線距離之和的最小值為___________.15.若正四棱柱的底面邊長(zhǎng)為5,側(cè)棱長(zhǎng)為4,則此正四棱柱的體積為______16.已知圓:,圓:,則圓與圓的位置關(guān)系是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某中學(xué)共有名學(xué)生,其中高一年級(jí)有名學(xué)生,為了解學(xué)生的睡眠情況,用分層抽樣的方法,在三個(gè)年級(jí)中抽取了名學(xué)生,依據(jù)每名學(xué)生的睡眠時(shí)間(單位:小時(shí)),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級(jí)學(xué)生的人數(shù)及圖中的值;(2)估計(jì)樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計(jì)全校睡眠時(shí)間超過個(gè)小時(shí)的學(xué)生人數(shù).18.(12分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)數(shù)列前項(xiàng)和為,且滿足,求的表達(dá)式;(3)令,對(duì)于大于的正整數(shù)、(其中),若、、三個(gè)數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組.19.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值20.(12分)已知數(shù)列的前n項(xiàng)和為,且,,數(shù)列滿足:,,,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和;(3)若不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍21.(12分)已知等差數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式及;(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知等差數(shù)列中,,前5項(xiàng)的和為,數(shù)列滿足,(1)求數(shù)列,的通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用等差數(shù)列下標(biāo)和性質(zhì),求得,再用等差數(shù)列前項(xiàng)和公式即可求解.【詳解】根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),,解得,.故選:B.2、D【解析】根據(jù)拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點(diǎn)睛】本題主要考查了拋物線的定義和性質(zhì).考查了考生對(duì)拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題3、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項(xiàng)系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當(dāng)且僅當(dāng)取等號(hào),所以的最小值為4.故答案為:4.【點(diǎn)睛】本題主要考查均值不等式,關(guān)鍵在于由一元二次不等式的解集的情況得出的關(guān)系,再將所求的式子運(yùn)用不等式的性質(zhì)降低元的個(gè)數(shù),運(yùn)用均值不等式,是中檔題.4、C【解析】設(shè)點(diǎn),其中,,根據(jù)拋物線的定義求得點(diǎn)的坐標(biāo),即可求得直線的斜率,即可得解.【詳解】設(shè)點(diǎn),其中,,則,可得,則,所以點(diǎn),故,因此,直線的傾斜角為.故選:C.5、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項(xiàng)和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.6、A【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A7、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則令,得.因?yàn)?,所以,故直線BC與平面所成角的正弦值為.故選:D.8、B【解析】由以及等差數(shù)列的性質(zhì),可得的值,再結(jié)合即可求出公差.【詳解】解:,得,,又,兩式相減得,則.故選:B.9、D【解析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【詳解】解:根據(jù)題意,設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項(xiàng)和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.10、C【解析】先對(duì)函數(shù)求導(dǎo),再由,可求出的關(guān)系式,然后求【詳解】由,得,因?yàn)?,所以,所以,故選:C11、D【解析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關(guān)于軸對(duì)稱,因?yàn)椋耘懦x項(xiàng);當(dāng)時(shí),有一零點(diǎn),設(shè)為,當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù)故選:D.12、B【解析】由,得到,結(jié)合,得到,進(jìn)而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設(shè),則,由,可得,所以,因?yàn)?,可得,又由,兩式相減得,即,即,又因?yàn)椋?,即又由,所以,解?故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】由分析可知每次小球數(shù)量剛好是等差數(shù)列的求和,最后直接公式即可算出答案.【詳解】由題意可知,,所以,故答案為:1514、【解析】過作,垂足分別為,由直線為拋物線的準(zhǔn)線,轉(zhuǎn)化,當(dāng)三點(diǎn)共線時(shí),取得最小值【詳解】過作,垂足分別為拋物線的焦點(diǎn)為直線為拋物線的準(zhǔn)線由拋物線的定義,故,當(dāng)三點(diǎn)共線時(shí),取得最小值故最小值為點(diǎn)到直線的距離:故答案為:15、100【解析】根據(jù)棱柱體積公式直接可得.【詳解】故答案為:10016、相交【解析】把兩個(gè)圓的方程化為標(biāo)準(zhǔn)方程,分別找出兩圓的圓心坐標(biāo)和半徑,利用兩點(diǎn)間的距離公式求出兩圓心的距離,與半徑和與差的關(guān)系比較即可知兩圓位置關(guān)系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)樣本中高一年級(jí)學(xué)生的人數(shù)為,;(2);(3)【解析】(1)利用分層抽樣可求得樣本中高一年級(jí)學(xué)生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計(jì)算出全校睡眠時(shí)間超過個(gè)小時(shí)的學(xué)生人數(shù).【小問1詳解】解:樣本中高一年級(jí)學(xué)生的人數(shù)為.,解得.【小問2詳解】解:設(shè)中位數(shù)為,前兩個(gè)矩形的面積之和為,前三個(gè)矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時(shí)間超過個(gè)小時(shí)的學(xué)生人數(shù)約為.18、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定等比數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式;(2)求得,然后分、兩種情況討論,結(jié)合裂項(xiàng)相消法可得出的表達(dá)式;(3)求得,分、、三種情況討論,利用奇數(shù)與偶數(shù)的性質(zhì)以及整數(shù)的性質(zhì)可求得、的值,綜合可得出結(jié)論.【小問1詳解】解:由可得,,則,,以此類推可知,對(duì)任意的,,則,故數(shù)列為等比數(shù)列,且該數(shù)列的首項(xiàng)為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當(dāng)n=1時(shí),,當(dāng)時(shí),.因?yàn)闈M足,所以.【小問3詳解】解:,、、這三項(xiàng)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,①若,則,所以,,又,所以,,則;②若,則,則,左邊為偶數(shù),右邊為奇數(shù),所以,②不成立;③若,同②可知③也不成立綜合①②③得,19、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問1詳解】證明:因?yàn)槠矫?,平面,平面,所以,且,因?yàn)?,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為20、(1),;(2);(3).【解析】(1)由可得數(shù)列是等比數(shù)列,即可求得,由得數(shù)列是等差數(shù)列,即可求得.(2)由(1)可得,再利用錯(cuò)位相減法求和即得.(3)將問題等價(jià)轉(zhuǎn)化為對(duì)任意恒成立,構(gòu)造數(shù)列并判斷其單調(diào)性,即可求解作答.【小問1詳解】數(shù)列的前項(xiàng)和為,,,當(dāng)時(shí),,則,而當(dāng)時(shí),,即得,因此,數(shù)列是以1為首項(xiàng),3為公比的等比數(shù)列,則,數(shù)列中,,,則數(shù)列是等差數(shù)列,而,,即有公差,則,所以數(shù)列,的通項(xiàng)公式分別是:,.【小問2詳解】由(1)知,,則,則有,兩式相減得:,從而得,所以數(shù)列的前n項(xiàng)和.【小問3詳解】由(1)知,,依題意得對(duì)任意恒成立,設(shè),則,當(dāng),,為單調(diào)遞減數(shù)列,當(dāng),,為單調(diào)遞增數(shù)列,顯然有,則當(dāng)時(shí),取得最大值,即最大值是,因此,,所以實(shí)數(shù)k取值范圍是.【點(diǎn)睛】思路點(diǎn)睛:一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前n項(xiàng)和時(shí),可采用錯(cuò)位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解21、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個(gè)量的值,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆江蘇省淮安市淮安區(qū)初三期初考試物理試題試卷含解析
- 甘南市重點(diǎn)中學(xué)2025屆初三下學(xué)期線上第一次周測(cè)化學(xué)試題含解析
- 湖北省黃石市白沙片區(qū)2025年初三下學(xué)期5月月考物理試題(A卷)含解析
- 武漢城市學(xué)院《行草創(chuàng)作(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 荊州學(xué)院《大學(xué)物理C》2023-2024學(xué)年第二學(xué)期期末試卷
- 杭州電子科技大學(xué)信息工程學(xué)院《韓國(guó)語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- DB1411T 66-2024旱垣區(qū)冬小麥田間測(cè)產(chǎn)操作規(guī)程
- DB1405T 067-2024規(guī)模豬場(chǎng)妊娠母豬飼養(yǎng)管理規(guī)程
- 煤化工企業(yè)運(yùn)營(yíng)管理考核試卷
- 電信行業(yè)供應(yīng)鏈管理與優(yōu)化考核試卷
- 2024年云南省昆明市五華區(qū)小升初數(shù)學(xué)試卷
- 2025年全球創(chuàng)新生態(tài)系統(tǒng)的未來展望
- 藝術(shù)色彩解讀
- 體育業(yè)務(wù)知識(shí)培訓(xùn)課件
- 《淞滬會(huì)戰(zhàn)》課件
- 《社區(qū)共治共建共享研究的國(guó)內(nèi)外文獻(xiàn)綜述》4300字
- 軟件代碼審計(jì)與測(cè)試作業(yè)指導(dǎo)書
- 上消化道出血護(hù)理疑難病例討論記
- 城市軌道交通自動(dòng)售票機(jī)
- 環(huán)境設(shè)計(jì)專業(yè)考察課程教學(xué)大綱
- 2024版互聯(lián)網(wǎng)企業(yè)股東合作協(xié)議書范本3篇
評(píng)論
0/150
提交評(píng)論